Skip to main content
Log in

Determination of molybdenum and uranium in biological materials by radiochemical neutron activation analysis

  • Analytical Techniques
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Recently developed radiochemical separation scheme for the simultaneous detemination of trace amounts of molybdenum and uranium in biological materials by NAA has been further refined and used for the detemination of these elements in several certified reference materials. The method assures very selective and quantitative separation of the indicator radionuclides:99Mo-99mTc and239Np from practically all accompanying activities followed by almost interference-free measurement by gamma ray spectrometry. The method can be applied to materials of both animal and plant origin and enables correcting the molybdenum results for uranium fission interference reaction thus assuring good accuracy for both elements down to ppb levels. The detection limits amount to 2.5 ppb (Mo) and 0.15 ppb (U) for ca. 200 mg samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Marczenko, R. Łobinski, Pure Appl. Chem., 63 (1991) 1627.

    Google Scholar 

  2. J. Versieck, R. Cornelis, Anal. Chim. Acta, 116 (1980) 217.

    Article  Google Scholar 

  3. R. M. Parr, in: Quality Assurance in Biomedical Neutron Activation Analysis, IAEA-TECDOC-323, IAEA, Vienna, 1984, p. 53.

    Google Scholar 

  4. P. Schramel, J. Radioanal. Nucl. Chem., 168 (1993) 215.

    Article  Google Scholar 

  5. E. Merian (Ed.), Metals and Their Compounds in the Environment, VCH-Verlagsgesellschaft, Weinheim, 1991.

    Google Scholar 

  6. K. Heydorn, Neutron Activation Analysis for Clinical Trace Element Research, Vol. 1, CRC Press Boca Raton, 1984, p. 14.

    Google Scholar 

  7. J. Versieck, J. Res. Nat. Bureau Stand., 91 (1986) 87.

    Google Scholar 

  8. M. D. Glascock, P. I. Nabelek, D. D. Weinrich, R. M. Coveney Jr., J. Radioanal. Nucl. Chem., 99 (1986) 121.

    Article  Google Scholar 

  9. S. Landsberger, Chem. Geol., 77 (1989) 65.

    Article  Google Scholar 

  10. K. S. Park, N. B. Kim, H. J. Woo, K. Y. Lee, Y. Y. Yoon, J. H. Lee, J. Radioanal. Nucl. Chem., 168 (1993) 153.

    Article  Google Scholar 

  11. R. E. Jervis, K. Y. Wong, Nuclear Activation Techniques in the Life Sciences, IAEA, Vienna, 1967, p. 137.

    Google Scholar 

  12. P. S. Tijoe, J. J. M. de Goeij, J. P. W. Houtman, J. Radioanal. Chem., 37 (1977) 511.

    Google Scholar 

  13. L. O. Plantin, Nuclear Activation Techniques in the Life Sciences, IAEA, Vienna, 1972, p. 73.

    Google Scholar 

  14. J. R. W. Woittiez, G. V. Iyengar, Fresen. Z. Anal. Chem., 332 (1988) 657.

    Article  Google Scholar 

  15. J. R. W. Woittiez, M. De La Cruz Tangonan, J. Radioanal. Nucl. Chem., 158 (1992) 313.

    Article  Google Scholar 

  16. A. R. Byrne, Radiochem. Radioanal. Letters, 52(2) (1982) 99.

    Google Scholar 

  17. Wei-Zhi Tian, W. D. Ehmann, J. Radioanal. Nucl. Chem., 89 (1985) 109.

    Google Scholar 

  18. A. R. Byrne, M. Dermelj, L. Kosta, M. Tusek-Znidaric, Mikrochim. Acta, I (1984) 119.

    Article  Google Scholar 

  19. J. Kucera, L. Soukal, J. Radioanal. Nucl. Chem., 168 (1993) 185.

    Article  Google Scholar 

  20. P. Lievens, R. Cornelis, J. Hoste, Anal. Chim. Acta, 80 (1975) 97.

    Article  PubMed  Google Scholar 

  21. B. Danko, R. Lobinski, R. Dybczynski, J. Radioanal. Nucl. Chem., 137 (1989) 145.

    Google Scholar 

  22. B. Danko, R. Dybczynski, J. Radioanal. Nucl. Chem., 192 (1995) 117.

    Article  Google Scholar 

  23. R. Dybczynski, B. Danko, J. Kaczorowski, Chem. Anal. (Warsaw), 34 (1989) 103.

    Google Scholar 

  24. J. Minczewski, J. Chwastowska, R. Dybczynski, Separation and Preconcentration Methods in Inorganic Trace Analysis, E. Horwood, Chichester, 1982.

    Google Scholar 

  25. F. Girardi, R. Pietra, E. Sabbioni, J. Radioanal. Chem., 5 (1970) 141.

    Google Scholar 

  26. G. Bernhard, J. Radioanal. Nucl. Chem., 177 (1994) 321.

    Article  Google Scholar 

  27. L. Currie, Anal. Chem., 40 (1968) 586.

    Article  Google Scholar 

  28. J. Op de Beeck, A Programme for Complete Quantitative Neutron Activation Analysis Using Ge(Li) Spectrometry and a Small Computer, Institute of Nuclear Sciences, Ghent University, Ghent, 1986.

    Google Scholar 

  29. R. Dams, J. Hoste, Anal. Chim. Acta, 41 (1968) 197.

    Article  Google Scholar 

  30. S. Landsberger, Chem. Geol., 77 (1989) 65.

    Article  Google Scholar 

  31. A. I. Saleh, J. R. W. Woittiez, G. D. Wals, H. A. Das, J. Radioanal. Nucl. Chem., 144 (1990) 165.

    Google Scholar 

  32. M. Vobecky, J. Radioanal. Nucl. Chem., 86 (1984) 255.

    Google Scholar 

  33. G. Erdtmann, J. Radioanal. Chem., 10 (1972) 137.

    Google Scholar 

  34. R. Dybczynski, M. Wasek, H. Maleszewska, J. Radioanal. Nucl. Chem., 130 (1989) 365.

    Google Scholar 

  35. R. Dybczynski, B. Danko, J. Radioanal. Nucl. Chem., 181 (1994) 43.

    Google Scholar 

  36. G. Erdtmann, Neutron Activation Tables, Verlag Chemie, Weinheim, 1976.

    Google Scholar 

  37. E. Cortes Toro, R. M. Parr, S. A. Clements, Biological and Environmental Reference Materials for Trace Elements Nuclides and Organic Microcontaminants, IAEA/RL/128 (Rev. 1), IAEA, Vienna, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danko, B., Dybczyński, R. Determination of molybdenum and uranium in biological materials by radiochemical neutron activation analysis. J Radioanal Nucl Chem 216, 51–57 (1997). https://doi.org/10.1007/BF02034495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02034495

Keywords

Navigation