Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 9, pp 2437–2453 | Cite as

Cuticle alkanes of honeybee larvae mediate arrestment of bee parasiteVarroa jacobsoni

  • M. Rickli
  • P. A. Diehl
  • P. M. Guerin
Article

Abstract

The ectoparasitic miteVarroa jacobsoni invades worker brood cells of the honeybeeApis mellifera during the last 20 hr before the cells are sealed with a wax cap. Cuticle extracts of 8-day-old worker honeybee larvae occupying such brood cells have an arrestment effect on the mite. The mites run for prolonged periods on the extract, systematically returning onto the stimulus after touching the borders of the treated area. Mites increase walking speed and path straightness in response to increasing doses of a nonpolar fraction of the cuticle extract. Saturated straight-chain odd-numbered C19–C29 hydrocarbons were identified by thin-layer argentation chromatography and gas chromatography-mass spectrometry as the most active constituents, with branched alkanes also contributing to the arrestment effect of this active fraction. Analysis of the behavior responses to syntheticn-alkanes indicate that the response is probably based on a synergism between the different alkane components of the fraction rather than to an individual compound.

Key words

Varroa jacobsoni Acari Varroidae mite Apis mellifera Hymenoptera Apidae honeybee chemoreception host selection cuticle hydrocarbons alkanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitzetmüller, K., andGuaraldo Goncalves, L.A. 1990. Dynamic impregnation of silica stationary phases for the argentation chromatography of lipids.J. Chromatogr. 519:349–358.Google Scholar
  2. Blomquist, G.J., Chu, A.J., andRemaley, S. 1980. Biosynthesis of wax in the honeybee,Apis mellifera.Insect Biochem. 10:313–321.Google Scholar
  3. Boot, W.J., Calis, J.N.M., andBeetsma, J. 1992. Differential periods ofVarroa mite invasion into worker and drone cells of honeybees.Exp. Appl. Acarol. 16:295–301.Google Scholar
  4. Breed, M.D., andStiller, T.M. 1992. Honeybee,Apis mellifera, nestmate discrimination: Hydrocarbon effects and the evolutionary implications of comb choice.Anim. Behav. 43:875–883.Google Scholar
  5. Büchler, R., Drescher, W., andTornier, I. 1992. Grooming behavior ofApis cerana, Apis mellifera andApis dorsata and its effect on the parasitic mitesVarroa jacobsoni andTropilaelaps clarae.Exp. Appl. Acarol. 16:313–319.Google Scholar
  6. Donzé, G., andGuerin, P.M. 1994. Behavioral attributes and parental care ofVarroa mites parasitizing Honeybee Brood.Behav. Ecol. Sociobiol. 34:305–319.Google Scholar
  7. Francis, B.R., Blanton, W.E., Littlefield, J.L., andNunamaker, R.A. 1989. Hydrocarbons of the cuticle and hemolymph of the adult honeybee (Hymenoptera: Apidae).Ann. Entomol. Soc. Am. 82:486–494.Google Scholar
  8. Getz, W. M., andSmith, K.B. 1987. Olfactory sensitivity and discrimination of mixtures in the honeybeeApis mellifera.J. Comp. Physiol. 160:239–245.Google Scholar
  9. Getz, W.M., Brückner, D., andSmith, K.B. 1989. Ontogeny of cuticular chemosensory cues in worker honeybeesApis mellifera.Apidologie 20:105–113.Google Scholar
  10. Grenier, S., Veith, V., andRenou, M. 1993. Some factors stimulating oviposition by the oophagous parasitoidTrichogramma brassicae Bezd. (Hym., Trichogrammatidae) in artificial host eggs.J. Appl. Entomol. 115:66–76.Google Scholar
  11. LeConte, Y., Arnold, G., Trouiller, J., Masson, C., Chappe, B., andOurisson, G. 1989. Attraction of the parasitic miteVarroa to the drone larvae of honeybees by simple aliphatic esters.Science 245:638–639.Google Scholar
  12. LeConte, Y., Arnold, G., Trouiller, J. andMasson, C. 1990. Identification of a brood pheromone in honeybees.Naturwissenschaften 77:334–336.Google Scholar
  13. Liu, T.P. 1990. Palpal tarsal sensilla of the female mite,Varroa jacobsoni Oud.Can. Entomol. 122:295–300.Google Scholar
  14. McDaniel, C.A., Howard, R.W., Blomquist, G.J., andCollins, A.M. 1984. Hydrocarbons of the cuticle, sting apparatus and sting shaft ofApis mellifera L. Identification and preliminary evaluation as chemotaxonomic characters.Sociobiology 8:287–298.Google Scholar
  15. McGill, R., Tukey, J.W., andLarsen, W.A. 1978. Variations of box plots.Am. Stat. 32:12–16.Google Scholar
  16. Milani, N., andNannelli, R. 1988. The tarsal sense organ inVarroa jacobsoni, pp. 71–82,in R. Cavalloro (ed.). Present Status of Varroatosis in Europe and Progress in theVarroa Mite Control. Office for official publications of European Communities, Luxembourg.Google Scholar
  17. Moritz, R.F.A., Kirchner, W.H., andCrewe, R.M. 1991. Chemical camouflage of the death's head hawkmoth (Acherontia atropos L.) in honeybee colonies.Naturwissenschaften 7:178–182.Google Scholar
  18. Nation, J.L., Sanford, M.T., andMilne, K. 1992. Cuticular hydrocarbons fromVarroa jacobsoni.Exp. Appl. Acarol. 16:331–344.Google Scholar
  19. O'Connor, J.G., Burrow, F.H., andNorris, M.S. 1962. Determination of normal paraffins in C20 to C32 paraffin waxes by molecular sieve adsorbtion.Anal. Chem. 34:82–85.Google Scholar
  20. Peng, Y.S., Fang, Y., Xu, S. andGe, L.J. 1987. The resistance mechanism of the Asian honeybee.Apis cerana Fabr., to an ectoparasitic mite,Varroa jacobsoni Oud.J. Invert. Pathol. 49:54–60.Google Scholar
  21. Phelan, P.L., Smith, A.W., andNeedham, G.R. 1991. Mediation of host selection by cuticular hydrocarbons in the honeybee tracheal miteAcarpis woodii (Rennie).J. Chem. Ecol. 17:463–473.Google Scholar
  22. Ramm, D., andBöckeler, W. 1989. Ultrastrukturelle Darstellungen der Sensillen in der Vordertarsengrube vonVarroa jacobsoni.Zool. Jahrb. Anat. 119:221–236.Google Scholar
  23. Rickli, M., Guerin, P.M., andDiehl, P.A. 1992. Palmitic acid released from honeybee worker larvae attracts the parasitic miteVarroa jacobsoni on a servosphere.Naturwissenschaften 79:320–322.Google Scholar
  24. Royalty, R.N., Phelan, L.R., andHall, F.R. 1993. Quantitative and temporal analysis of effects of twospotted spider mite (Acari: Tetranychidae) female sex pheromone on male guarding behavior.J. Chem. Ecol. 19:211–223.Google Scholar
  25. Sato, M., Kuwahara, Y., Mastuyama, S., andSuzuki, T. 1993. Male and female sex pheromones produced byAcarus immobilis Griffiths (Acaridae: Acarina).Naturwissenschaften 80:34–36.Google Scholar
  26. Schmitt, U., Lübke, G., andFrancke, W. 1991. Tarsal secretion marks food sources in bumblebees (Hymenoptera: Apidae).Chemoecology 2:35–40.Google Scholar
  27. Singer, T.L., andEspelie, K.E. 1992. Social wasps use nestpaper hydrocarbons for nestmate recognition.Anim. Behav. 44:63–68.Google Scholar
  28. Tulloch, A.P. 1980. Beeswax—composition and analysis.Beeworld 61:47–62.Google Scholar
  29. Thrasyvoulou, A.T., andBenton, A.W. 1982. Rates of growth of honeybee larvae.J. Apic. Res. 21:189–192.Google Scholar
  30. Waage, J.K. 1978. Arrestment response of the parasitoid,Nemeritis canescens, to a contact chemical produced by its host,Plodia interpunctella.Physiol. Entomol. 3:135–146.Google Scholar
  31. Winston, M.L. 1987. The Biology of the Honeybee. Harvard University Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. Rickli
    • 1
  • P. A. Diehl
    • 2
  • P. M. Guerin
    • 2
  1. 1.Department of ApicultureSwiss Federal Research StationLiebefeldSwitzerland
  2. 2.Institute of ZoologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations