Skip to main content
Log in

Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In aerobic enrichment experiments with a chemostat, using phosphate-limited lactate medium, aSpirillum sp. predominated at the lower range of dilution rates. At the higher dilution rates an (chemoorganotrophic) unidentified rod-shaped bacterium came to the fore. The same result was obtained in competition experiments with pure cultures of the two bacteria. Growth parameters were: Rod,Μ max=0.48 hr−1,k s(PO4 3−)=6.6×10−N M;Spirillum, Μ max=0.24 hr−1· ks(PO4 3−) =2.7×10−8 M. TheSpirillum grew faster than the rod at low dilution rates, not only under phosphate-limitation but also in K+-,Mg2+-, NH4 +-, aspartate-, succinate-, and lactate-limited cultures. Both organisms showed little substrate specificity and could utilize a similar range of carbon and energy sources. The results support the view that part of the diversity among bacteria in the natural environment is based on selection toward substrate concentration. Another set of competition experiments was carried out with pure cultures of two marine obligately chemolithotrophic colorless sulfur bacteria,Thiobacillus thioparus andThiomicrospira pelophila. Tms. pelophila outgrewT. thioparus at low dilution rates under iron limitation, while the reverse was true at high dilution rates. It is concluded that the relatively fast growth ofTms. pelophila at low iron concentration may explain its higher sulfide tolerance. Organisms showing a selection advantage at very low concentrations of limiting substrates appear to have a relatively high surface to volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Gemerden, H. and Jannasch, H.W. 1971. Continuous cultureof Thiorhodaceae. Sulfide and sulfur limited growth ofChromatium vinosum.Arch. Mikrobiol. 79:345–353.

    Article  PubMed  Google Scholar 

  2. Golterman, H.L. 1969. Methods for Chemical Analysis of Fresh Waters. IBF Handbook, no. 8, 3rd ed., Blackwell Scientific Publ. Oxford, Edinburgh.

    Google Scholar 

  3. Hansen, T.A. and van Gemerden, H. 1972. Sulfide utilization by purple nonsulfur bacteria.Arch. Mikrobiol. 86: 49–56.

    Article  PubMed  Google Scholar 

  4. Harder, W. and Veldkamp, H. 1968. Physiology of an obligately psychrophilic marinePseudomonas species.J. Appl. Bacteriol. 31: 12–23.

    Google Scholar 

  5. Harder, W. and Veldkamp, H. 1971. Competition of marine psychrophilic bacteria at low temperatures.Antonie van Leeuwenhoek 37: 51–63.

    PubMed  Google Scholar 

  6. Jannasch, H. W. 1967. Enrichments of aquatic bacteria in continuous culture.Arch. Mikrobiol. 59: 165–173.

    Article  PubMed  Google Scholar 

  7. Kuenen, J.G. 1972. Een Studie van kleurloze zwavelbacteriËn uit het Groninger Wad. Dissertation. University of Groningen.

  8. Kuenen, J. G. 1975. Colourless sulfur bacteria and their role in the sulfur cycle.Plant and Soil 43: 49–76.

    Article  Google Scholar 

  9. Kuenen, J.G., Cuperus, P. and Harder, W. 1973, A low cost multichannel scanning pH-stat.Lab. Pract. 22: 36–38.

    PubMed  Google Scholar 

  10. Kuenen, J.G. and Veldkamp, H. 1972.Thiomicrospira pelophila, nov. gen., nov. sp., a new obligately chemolithotropic colourless sulfur bacterium.Antonie van Leeuwenhoek. 38: 241–256.

    PubMed  Google Scholar 

  11. Kuenen, J.G. and Veldkamp, H. 1973. Effect of organic compounds on growth of chemostat culturesof Thiomicrospira pelophila, Thiobacillus thioparus andThiobacillus neapolitanus.Arch. Mikrobiol. 94: 173–190.

    Article  PubMed  Google Scholar 

  12. Lewin, J. and Chen, C.H. 1971. Available iron: a limiting factor for marine phytoplankton.Limnol. Oceanogr. 16: 670–675.

    Google Scholar 

  13. Meers, J. L. 1971. Effect of dilution rate on the outcome of chemostat mixed culture experiments.J. Gen. Microbiol. 67: 359–361.

    PubMed  Google Scholar 

  14. Meers, J. L. and Tempest, D.W. 1968. The influence of extracellular products on the behaviour of mixed microbial populations in magnesium-limited chemostat cultures.J. Gen. Microbiol. 52:309–317.

    Google Scholar 

  15. Monod, J. 1942.Recherche sur la croissance des cultures bactériennes. Hermann & Cie, Paris.

    Google Scholar 

  16. Veldkamp, H. and Jannasch, H. W. 1972. Mixed culture studies with the chemostat.J. Appl. Chem. Biotechnol. 22: 105–123.

    Google Scholar 

  17. Veldkamp, H. and Kuenen, J.G. 1973. The chemostat as a model system for ecological investigation.Bull. Ecol. Res. Comm. (Stockholm)17: 347–355.

    Google Scholar 

  18. Vishniac, W. and Santer, M. 1957. The thiobacilli.Bacteriol. Rev. 21: 195–213.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuenen, J.G., Boonstra, J., Schröder, H.G.J. et al. Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. Microb Ecol 3, 119–130 (1977). https://doi.org/10.1007/BF02010401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02010401

Keywords

Navigation