Microbial Ecology

, Volume 3, Issue 2, pp 119–130 | Cite as

Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria

  • J. G. Kuenen
  • J. Boonstra
  • H. G. J. Schröder
  • H. Veldkamp


In aerobic enrichment experiments with a chemostat, using phosphate-limited lactate medium, aSpirillum sp. predominated at the lower range of dilution rates. At the higher dilution rates an (chemoorganotrophic) unidentified rod-shaped bacterium came to the fore. The same result was obtained in competition experiments with pure cultures of the two bacteria. Growth parameters were: Rod,Μmax=0.48 hr−1,ks(PO43−)=6.6×10−NM;Spirillum, Μmax=0.24 hr−1· ks(PO43−) =2.7×10−8M. TheSpirillum grew faster than the rod at low dilution rates, not only under phosphate-limitation but also in K+-,Mg2+-, NH4+-, aspartate-, succinate-, and lactate-limited cultures. Both organisms showed little substrate specificity and could utilize a similar range of carbon and energy sources. The results support the view that part of the diversity among bacteria in the natural environment is based on selection toward substrate concentration. Another set of competition experiments was carried out with pure cultures of two marine obligately chemolithotrophic colorless sulfur bacteria,Thiobacillus thioparus andThiomicrospira pelophila. Tms. pelophila outgrewT. thioparus at low dilution rates under iron limitation, while the reverse was true at high dilution rates. It is concluded that the relatively fast growth ofTms. pelophila at low iron concentration may explain its higher sulfide tolerance. Organisms showing a selection advantage at very low concentrations of limiting substrates appear to have a relatively high surface to volume ratio.


Succinate Pure Culture Dilution Rate Inorganic Substrate Competition Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Gemerden, H. and Jannasch, H.W. 1971. Continuous cultureof Thiorhodaceae. Sulfide and sulfur limited growth ofChromatium vinosum.Arch. Mikrobiol. 79:345–353.CrossRefPubMedGoogle Scholar
  2. 2.
    Golterman, H.L. 1969. Methods for Chemical Analysis of Fresh Waters. IBF Handbook, no. 8, 3rd ed., Blackwell Scientific Publ. Oxford, Edinburgh.Google Scholar
  3. 3.
    Hansen, T.A. and van Gemerden, H. 1972. Sulfide utilization by purple nonsulfur bacteria.Arch. Mikrobiol. 86: 49–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Harder, W. and Veldkamp, H. 1968. Physiology of an obligately psychrophilic marinePseudomonas species.J. Appl. Bacteriol. 31: 12–23.Google Scholar
  5. 5.
    Harder, W. and Veldkamp, H. 1971. Competition of marine psychrophilic bacteria at low temperatures.Antonie van Leeuwenhoek 37: 51–63.PubMedGoogle Scholar
  6. 6.
    Jannasch, H. W. 1967. Enrichments of aquatic bacteria in continuous culture.Arch. Mikrobiol. 59: 165–173.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuenen, J.G. 1972. Een Studie van kleurloze zwavelbacteriËn uit het Groninger Wad. Dissertation. University of Groningen.Google Scholar
  8. 8.
    Kuenen, J. G. 1975. Colourless sulfur bacteria and their role in the sulfur cycle.Plant and Soil 43: 49–76.CrossRefGoogle Scholar
  9. 9.
    Kuenen, J.G., Cuperus, P. and Harder, W. 1973, A low cost multichannel scanning pH-stat.Lab. Pract. 22: 36–38.PubMedGoogle Scholar
  10. 10.
    Kuenen, J.G. and Veldkamp, H. 1972.Thiomicrospira pelophila, nov. gen., nov. sp., a new obligately chemolithotropic colourless sulfur bacterium.Antonie van Leeuwenhoek. 38: 241–256.PubMedGoogle Scholar
  11. 11.
    Kuenen, J.G. and Veldkamp, H. 1973. Effect of organic compounds on growth of chemostat culturesof Thiomicrospira pelophila, Thiobacillus thioparus andThiobacillus neapolitanus.Arch. Mikrobiol. 94: 173–190.CrossRefPubMedGoogle Scholar
  12. 12.
    Lewin, J. and Chen, C.H. 1971. Available iron: a limiting factor for marine phytoplankton.Limnol. Oceanogr. 16: 670–675.Google Scholar
  13. 13.
    Meers, J. L. 1971. Effect of dilution rate on the outcome of chemostat mixed culture experiments.J. Gen. Microbiol. 67: 359–361.PubMedGoogle Scholar
  14. 14.
    Meers, J. L. and Tempest, D.W. 1968. The influence of extracellular products on the behaviour of mixed microbial populations in magnesium-limited chemostat cultures.J. Gen. Microbiol. 52:309–317.Google Scholar
  15. 15.
    Monod, J. 1942.Recherche sur la croissance des cultures bactériennes. Hermann & Cie, Paris.Google Scholar
  16. 16.
    Veldkamp, H. and Jannasch, H. W. 1972. Mixed culture studies with the chemostat.J. Appl. Chem. Biotechnol. 22: 105–123.Google Scholar
  17. 17.
    Veldkamp, H. and Kuenen, J.G. 1973. The chemostat as a model system for ecological investigation.Bull. Ecol. Res. Comm. (Stockholm)17: 347–355.Google Scholar
  18. 18.
    Vishniac, W. and Santer, M. 1957. The thiobacilli.Bacteriol. Rev. 21: 195–213.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • J. G. Kuenen
    • 1
  • J. Boonstra
    • 1
  • H. G. J. Schröder
    • 1
  • H. Veldkamp
    • 1
  1. 1.Department of MicrobiologyUniversity of Groningen, Biological CenterHaren (Gr.)The Netherlands

Personalised recommendations