Advertisement

Calcified Tissue Research

, Volume 22, Issue 1, pp 219–226 | Cite as

An x-ray diffraction investigation of age-related changes in the crystal structure of bone apatite

  • C. B. Smith
  • D. A. Smith
Original Papers

Abstract

Evidence relating to the existence of crystalline bone mineral in vivo is considered, and bone apatite crystal structure investigated using an x-ray powder diffraction technique. Specimens of femoral compacta excised post-mortem from male and female subjects ranging from 3 1/2 years to 87 years of age have been studied. Values of the ratio c/a of bone apatite crystal cell axes for females are significantly higher (p<0.05) than for males. Moreover, significant change of c/a with age is observed for males (p=0.0005) but not for females (p=0.30). Differences in c/a are interpreted as indicating substitution of constituent ions in the bone apatite crystals.

Key words

Hydroxyapatite Bone X-ray Diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bale, W. F.: A comparative roentgen-ray diffraction study of several natural apatites and the apatite-like constituent of bone and tooth substance. Amer. J. Roentgenol.43, 735–747 (1940)Google Scholar
  2. Bassett, C. A. L.: Electromechanical forces regulating bone architecture, pp. 78–89. In: Proceedings of the 3rd European Symposium on Calcified Tissues, Davos 1965Google Scholar
  3. Bassett, C. A. L., Lawluk, R. J., Becker, R. O.: Effects of electric currents on bone in vivo. Nature (Lond.)204, 652–654 (1964)Google Scholar
  4. Biggs, W. D.: Theoretical background, pp. 28–57. In: Composite materials. New York: Elsevier 1966Google Scholar
  5. Blumenthal, N. C., Posner, A. S.: Effect of preparation conditions in the properties and transformation of amorphous calcium phosphate. Mat. Res. Bull.7, 1181–1190 (1972)CrossRefGoogle Scholar
  6. Boskey, A. L., Posner, A. S.: Magnesium stabilisation of amorphous calcium phosphate: A kinetic study. Mat. Res. Bull.9, 907–916 (1974)CrossRefGoogle Scholar
  7. Burnell, J. M., Teubner, E., Wergedal, J. E., Sherrard, D. J.: Bone crystal maturation in renal osteodystrophy in humans. J. clin. Invest.53, 52–58 (1974)PubMedGoogle Scholar
  8. Carlstrom, D.: X-ray crystallographic studies on apatites and calcified structures. Acta radiol. Suppl. 121 (1955)Google Scholar
  9. Chamay, A., Tschantz, P.: Mechanical influences in bone remodelling: Experimental research on Wolff's law. J. Biomechs.5, 173–180 (1972)CrossRefGoogle Scholar
  10. Chatterji, S.: Formation of polycrystalline aggregate in mineral and biological systems. Experientia (Basel)30, 252–253 (1974)Google Scholar
  11. Chatterji, S., Jeffery, J. W.: Changes in structure of human bone with age. Nature (Lond.)219, 482–484 (1968)Google Scholar
  12. Chatterji, S., Wall, J. C., Jeffery, J. W.: Changes in the degree of orientation of bone minerals with age in the human femur. Experientia (Basel)28, 156–157 (1972)Google Scholar
  13. Chen, H. L., Gundjian, A. A.: Determination of the bone-crystallites distribution function by x-ray diffraction. Med. biol. Eng.12, 531–536 (1974)PubMedGoogle Scholar
  14. Cochran, G. V. B.: Implantation of strain gauges on bone in vivo. J. Biomechs.5, 119–123 (1972)CrossRefGoogle Scholar
  15. De Jong, W. F.: La substance minerale dans les os. Rec. Trav. Chim.45, 445–448 (1926)Google Scholar
  16. Eanes, E. D., Gillessen, I. H., Posner, A. S.: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965)Google Scholar
  17. Eanes, E. D., Posner, A. S.: Kinetics and mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. Trans. N. Y. Acad. Sci.28, 233–241 (1965)Google Scholar
  18. Eanes, E. D., Termine, J.D., Posner, A. S.: Amorphous calcium phosphate in skeletal tissue. Clin. Orthop.53, 223–235 (1967)PubMedGoogle Scholar
  19. Harper, R. A., Posner, A. S.: Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. exp. Biol. (N.Y.)122, 137–142 (1966)Google Scholar
  20. Herrmann, G., Liebowitz, H.: Mechanics of bone fracture, pp. 771–840. In: Fracture — An advanced treatise. VII. Academic Press 1972Google Scholar
  21. Lanyon, L. E., Smith, R. N.: Bone strain in the tibia during normal quadripedal locomotion. Acta orthop. scand.41, 238–248 (1970)PubMedGoogle Scholar
  22. Lefevre, M. L., Bale, W. F., Hodge, H.: The chemical nature of the inorganic portion of fetal tooth substance. J. dent. Res.16, 85–101 (1937)Google Scholar
  23. Lenart, G., Bidlo, G., Pinter, J.: Use of x-ray diffraction method in investigations on mineral substances of bone and callus. Acta Biochim. et Biophys. Acad. Sci. hung.3, 305–316 (1968)Google Scholar
  24. Lenart, G., Bidlo, G., Pinter, J.: X-ray diffraction investigation on the growing zone of long bones. Acta Biochim. et Biophys. Acad. Sci. hung.6, 307–309 (1971)Google Scholar
  25. Mather, K.: Correlation. In: Statistical analysis in biology, p. 160. London: Chapman & Hall 1972Google Scholar
  26. McConnell, D.: A structural investigation of the isomorphism of the apatite group. Amer. Mineral.23, 1–19 (1938)Google Scholar
  27. McConnell, D.: The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissues. J. dent. Res.31, 53–63 (1952)PubMedGoogle Scholar
  28. McCutchen, C. W.: Do mineral crystals stiffen bone by strait-jacketing its collagen. J. theor. Biol.51, 51–58 (1975)CrossRefPubMedGoogle Scholar
  29. Miller, A. L., Schraer, H.: Ultrastructural observations of amorphous bone mineral in avian bone. Calcif. Tiss. Res.18, 311–324 (1975)Google Scholar
  30. Mosebach, R.: Quelques proprietes cristallographiques et optiques de diverses apatites. Bull. Group Int. Rech. Sc. Stomat.11, 55–66 (1968)Google Scholar
  31. Pautard, F. G. E.: Biophysical properties of connective tissues, p. 440. In: The comparative molecular biology of extracellular matrices. New York: Academic Press 1972Google Scholar
  32. Posner, A. S.: Crystal chemistry of bone mineral. Physiol. Rev.49, 760–792 (1969)PubMedGoogle Scholar
  33. Posner, A. S.: Bone mineral on the molecular level. Fed. Proc.32, 1933–1937 (1973)PubMedGoogle Scholar
  34. Posner, A. S., Blumenthal, N. C., Boskey, A. L., Betts, F.: Synthetic analogue of bone mineral formation. J. dent. Res.54, B88–93 (1975)PubMedGoogle Scholar
  35. Robinson, R. A., Watson, M. L.: Collagen-crystal relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. N.Y. Acad. Sci.60, 596–629 (1955)PubMedGoogle Scholar
  36. Salmon, S.: In vivo tendon tension and bone strain measurement and correlation. J. Biomechs.8, 87–88 (1975)CrossRefGoogle Scholar
  37. Selvig, K. A.: Periodic lattice images of hydroxyapatite crystals in human bone and dental tissues. Calcif. Tiss. Res.6, 227–238 (1970)Google Scholar
  38. Swanson, G. T., Lafferty, J. F.: Electrical properties of bone as a function of age, immobilization and vibration. J. Biomechs.5, 261–266 (1972)CrossRefGoogle Scholar
  39. Tannenbaum, P. J., Schraer, H., Posner, A. S.: Crystalline changes in avian bone related to the reproductive cycle. II. Percent crystallinity changes. Calcif. Tiss. Res.14, 83–86 (1974)Google Scholar
  40. Termine, J. D., Eanes, E. D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tiss. Res.10, 171–197 (1972)Google Scholar
  41. Termine, J. D., Peckauskas, R. A., Posner, A. S.: Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys.140, 318–325 (1970)CrossRefPubMedGoogle Scholar
  42. Termine, J. D., Posner, A. S.: Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature (Lond.)211, 268–270 (1966a)Google Scholar
  43. Termine, J. D., Posner, A. S.: Infra-red analysis of rat bone: age-dependency of amorphous and crystalline mineral fractions. Science153, 1523–1525 (1966b)PubMedGoogle Scholar
  44. Termine, J. D., Posner, A. S.: Amorphous/crystalline interrelationships in bone mineral. Calcif. Tiss. Res.1, 8–23 (1967)CrossRefGoogle Scholar
  45. Trautz, O. R.: X-ray diffraction of biological and synthetic apatites. Ann. N.Y. Acad. Sci.60, 698–713 (1955)Google Scholar
  46. Trautz, O. R., Klein, E., Addelston, K. H.: Variations in the x-ray diffractograms of dental enamel of man and shark. J. dent. Res.31, 472–473 (1952)Google Scholar
  47. Trautz, O. R., Klein, E., Fessenden, E., Addelston, H. K.: The interpretation of the x-ray diffractograms obtained from human enamel. J. dent. Res.32, 420–431 (1953)PubMedGoogle Scholar
  48. Wallgren, W.: Biophysical analyses of the formation and structure of human fetal bone. Acta paediat., Suppl. 113 (1957)Google Scholar
  49. Wuthier, R. E., Bisaz, S., Russell, R. G. G., Fleisch, H.: Relationship between pyrophosphate, amorphous calcium phosphate, and other factors in the sequence of calcification in vivo. Calcif. Tiss. Res.10, 198–206 (1972)Google Scholar
  50. Wuthier, R. E., Eanes, E. D.: Effect of phospholipids on the transformation of amorphous calcium phosphate to hydroxyapatite in vitro. Calcif. Tiss. Res.19, 197–210 (1975)Google Scholar
  51. Young, R. A.: Implications of atomic substitutions and other structural details in apatites. J. dent. Res.53, 193–203 (1974)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • C. B. Smith
    • 1
  • D. A. Smith
    • 2
  1. 1.Department of Clinical Physics and Bio-EngineeringWest of Scotland Health BoardsGlasgowUK
  2. 2.The Bone Metabolism Research UnitUniversity Department of MedicineGlasgowUK

Personalised recommendations