Skip to main content
Log in

Electrophysiology of phagocytic membranes: Induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Some electrophysiological characteristics of macrophages and macrophage polykaryons of foreign body granuloma have been investigated. Cells were obtained from implants of small coverslips in the subcutaneous tissue or in the peritoneal cavity of rats and mice. Transmembrane potentials ranged from −5 to −40 mV. Input resistances ranged from 5 to 120 MΩ, being significantly higher in mice polykaryons. Approximately 10% of the cells exhibited spontaneous slow membrane hyperpolarizations (SH) indistinguishable from those observed in macrophages. SH responses were invariably evoked by iontophoretic injection of calcium ions into the cytoplasm of mice macrophages or macrophage polykaryons. The amplitude of these responses increased with the amount of current carried by calcium ions into the cells. The maximum amplitude of the calcium-induced SH responses is a linear function of the logarithm of [K+] 0 (from 3 to 40mm). The slope of the regression line is 43 mV for a 10-fold increase in [K+] 0 . Substituting sodium chloride by sodium isethionate or by choline chloride does not interfere with the occurrence of SH. The assumption that the SH is solely a consequence of an increase in the membrane conductance to K+ was used to calculate the potassium equilibrium potential (E K). TheE K value is also a linear function of the logarithm of [K+] 0 (from 3 to 40mm). The slope of the regression line is 46 mV for a 10-fold increase in [K+] 0 . These results constitute evidence of the calcium dependence of K+ permeability during SH both in macrophages and macrophage polykaryons. Macrophage polykaryons are a more convenient model than macrophages for the study of the mechanisms underlying the SH responses and their possible physiological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anchieta, O., Kouri, J. 1971. Ultra-estrutura de la inflamación aséptica.Rev. CENIC (Cuba) 3:111–126

    Google Scholar 

  2. Atwater, I., Dawson, C.M., Ribalet, B., Rojas, E. 1979. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell.J. Physiol. 288:575–588

    PubMed  Google Scholar 

  3. Castranova, V., Bowman, L., Miles, P.R. 1979. Transmembrane potential and ionic content of rat alveolar macrophages.J. Cell. Physiol. 101:471–480

    Article  PubMed  Google Scholar 

  4. Chambers, T.J. 1977. Studies on the phagocytic capacity of macrophage polykaryons.J. Pathol. 123:65–77

    Article  PubMed  Google Scholar 

  5. Dos Reis, G.A., Oliveira-Castro, G.M. 1977. Electrophysiology of phagocytic membranes: I. Potassium dependent slow membrane hyperpolarizations in mice macrophages.Biochim. Biophys. Acta 469:257–263

    PubMed  Google Scholar 

  6. Dos Reis, G.A., Persechini, P.M., Ribeiro, J.M.C., Oliveira-Castro, G.M. 1979. Electrophysiology of phagocytic membranes: II. Membrane potential and induction of slow hyperpolarizations in activated macrophages.Biochim. Biophys. Acta 552:331–340

    PubMed  Google Scholar 

  7. Gallin, E.K., Gallin, J.I. 1977. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes.J. Cell. Biol. 75:277–289

    Article  PubMed  Google Scholar 

  8. Gallin, E.K., Wiederhold, M.L., Lipsky, P.E., Rosenthal, A.S. 1976. Spontaneous and induced membrane hyperpolarizations in macrophages.J. Cell. Physiol. 86:653–661

    Article  Google Scholar 

  9. Gallin, J.I., Gallin, E.K., Malech, H.L., Cramer, E.B. 1978. Structural and ionic events during leucocyte chemotaxisIn: “Leukocyte Chemotaxis”. J.I. Gallin and P.G. Quie, editors, pp. 123–141. Raven Press, New York

    Google Scholar 

  10. Henkart, M.P., Nelson, P.G. 1979. Evidence for an intracellular calcium store releasable by surface stimuli in fibroblasts (L cells).J. Gen. Physiol. 73:655–673

    Article  PubMed  Google Scholar 

  11. Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500–544

    PubMed  Google Scholar 

  12. Iwatsuki, N., Petersen, O.H. 1978. Intracellular Ca2+ injection causes membrane hyperpolarization and conductance increase in lacrimal acinar cells.Pfluegers Arch. 377:185–187

    Article  Google Scholar 

  13. Krnjevic, K., Lisiewicz, A. 1972. Injections of calcium ions into spinal motoneurones.J. Physiol. 225:363–390

    PubMed  Google Scholar 

  14. Lew, V., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.In: Current Topics in Membranes and Transport. Vol. 10, pp. 217–277. Academic Press, New York

    Google Scholar 

  15. Mariano, M., Nikitin, T., Malucelli, B.E. 1976. Immunological and non-immunological phagocytosis by inflammatory macrophages, epithelioid cells and macrophage polykaryons from foreign body granulomata.J. Pathol. 120:151–159

    Article  PubMed  Google Scholar 

  16. Mariano, M., Spector, W.G. 1974. The formation and properties of macrophage polykaryons (inflammatory giant cells).J. Pathol. 133:1–19

    Article  Google Scholar 

  17. Meech, R.W. 1976. Intracellular calcium and the control of membrane permeability.In: Calcium in Biological Systems. C.J. Duncan, editor, pp. 161–191. Cambridge University Press, Cambridge

    Google Scholar 

  18. Nelson, P.G., Peacock, J., Minna, J. 1972. An active electrical response in fibroblasts.J. Gen. Physiol. 60:58–71

    Article  PubMed  Google Scholar 

  19. Okada, Y., Doida, Y., Roy, G., Tsuchiya, W., Inouye, K., Inouye, A. 1977. Oscillations of membrane potential in L cells: I. Basic characteristics.J. Membrane Biol. 35:319–335

    Article  Google Scholar 

  20. Okada, Y., Tsuchiya, W., Inouye, A. 1979. Oscillations of membrane potential in L cells. IV. Role of intracellular Ca2+ in hyperpolarizing excitability.J. Membrane Biol. 47:357–376

    Article  Google Scholar 

  21. Oliveira-Castro, G.M., Dos Reis, G.A. 1980. Electrophysiology of phagocytic membranes: III. Evidences for a calcium dependent potassium permeability change during slow membrane hyperpolarizations of activated macrophages.Biochim. Biophys. Acta 640:500–511

    Google Scholar 

  22. Oliveira-Castro, G.M., Machado, R.D. 1969. Control of glass microelectrodes for intracellular recordings.Experientia 25:556–558

    Article  PubMed  Google Scholar 

  23. Papadimitriou, J.M. 1979. The role of resident and exudate macrophages in multinucleate giant cell formation.J. Pathol. 128:93–97

    Article  PubMed  Google Scholar 

  24. Papadimitriou, J.M., Kingston, K.J. 1977. The locomotory behaviour of the multinucleate giant cells of foreign body reactions.J. Pathol. 121:27–36

    Article  PubMed  Google Scholar 

  25. Papadimitriou, J.M., Rigby, P.J. 1979. The detection of a contractile apparatus in murine multinucleate giant cells.J. Pathol. 129:91–97

    Article  PubMed  Google Scholar 

  26. Papadimitriou, J.M., Robertson, T.A. 1980. Exocytosis by macrophage polykarya: An ultrastructural study.J. Pathol. 130:75–81

    Article  PubMed  Google Scholar 

  27. Papadimitriou, J.M., Robertson, T.A., Walters, M.N. 1975. An analysis of the phagocytic potential of multinucleate foreign body giant cells.Am. J. Pathol. 78:343–358

    PubMed  Google Scholar 

  28. Papadimitriou, J.M., Spector, W.G. 1971. The origin, properties and fate of epithelioid cells.J. Pathol. 105:187–203

    Article  PubMed  Google Scholar 

  29. Papadimitriou, J.M., Wee, S.H. 1976. Selective release of lysosomal enzymes from cell populations containing multinucleate giant cells.J. Pathol. 120:193–199

    Article  PubMed  Google Scholar 

  30. Parod, R.J., Putney, J.W., Jr. 1978. The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland.J. Physiol. 281:371–381

    PubMed  Google Scholar 

  31. Putney, J.W., Jr. 1978. Role of calcium in the fade of the potassium release response in the rat parotid gland.J. Physiol. 281:383–394

    PubMed  Google Scholar 

  32. Putney, J.W., Jr., Leslie, B.A., Marier, S.H. 1978. Calcium and the control of potassium efflux in the sublingual gland.Am. J. Physiol. 235:C128-C135

    PubMed  Google Scholar 

  33. Romero, P.J., Whittam, R. 1971. The control by internal calcium of membrane permeability to sodium and potassium.J. Physiol. 214:481–507

    PubMed  Google Scholar 

  34. Schneider, C., Gennaro, R., Nicola, G. de, Romeo, D. 1978. Secretion of granule enzymes from alveolar macrophages.Exp. Cell. Res. 112:249–256

    Article  PubMed  Google Scholar 

  35. Trautwein, W., Dudel, J. 1958. Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser.Pfluegers Arch. 266:324–334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persechini, P.M., Araujo, E.G. & Oliveira-Castro, G.M. Electrophysiology of phagocytic membranes: Induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection. J. Membrain Biol. 61, 81–90 (1981). https://doi.org/10.1007/BF02007634

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02007634

Key words

Navigation