Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation of severalRubus genotypes and recovery of transformed plants

  • Original Papers
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Experiments in shoot regeneration and virulentAgrobacterium tumefaciens-mediated transformation were used to develop a protocol forRubus transformation. This protocol was then used to produce transformedRubus plants fromin vitro internodes inoculated with anAgrobacterium tumefaciens encoding neomycin phosphotransferase on its disarmed T-DNA. Two transformed plants were selected from 800 inoculations on a medium containing 10 µg ml−1 kanamycin. Results indicated that this level of kanamycin successfully selected against non-transformed cells but did not reduce the number of transformed, kanamycin-resistant, shoots formed. Enzyme assays and Southern blot analysis verified the presence of the β-glucuronidase gene in the plant genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

CAT:

chloramphenicol acetyl transferase

CSR:

chlorsulfuron resistance

2,4-D:

2,4-dichlorophenoxyacetic acid

β-GUS:

β-glucuronidase

IAA:

indoleacetic acid

IBA:

indolebutyric acid

NAA:

naphthaleneacetic acid

NPT:

neomycin phosphotransferase

TDZ:

thidiazuron

References

  • Alt-Moerbe J, Neddermann P, von Lintig J, Weiler EW & Schroder J (1988) Temperature-sensitive step in Ti plasmidvir-region induction and correlation with cytokinin secretion byAgrobacteria. Mol. Gen. Genet. 213: 1–8

    Article  Google Scholar 

  • Bolton GW, Nester EW & Gordon MP (1986) Plant phenolic compounds induce expression of theAgrobacterium tumefaciens loci needed for virulence. Science 232: 983–985

    PubMed  Google Scholar 

  • Burr TJ, Katz BH & Bishop AL (1987) Populations ofAgrobacterium in vineyard and nonvineyard soils and grape roots in vineyards and nurseries. Plant Dis. 71: 617–620

    Google Scholar 

  • Colby SM & Meredith CP (1990) Kanamycin sensitivity of cultured tissues ofVitis. Plant Cell Rep. 9: 237–240

    Article  Google Scholar 

  • Colby SM, Juncosa AM & Meredith CP (1991) Cellular differences inAgrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sci. 116: 356–361

    Google Scholar 

  • Davies JA, Addison CF, Delaney SF, Sunkel C & Glover DM (1986) Expression of a prokaryotic gene for chloramphenicol acetyl transferase inDrosophila under the control of larval serum protein 1 gene promoters. J. Mol. Biol. 189: 13–24

    Article  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D & Helinski D (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank ofRhizobium meliloti. Proc. Natl. Acad. Sci. USA. 77: 7347–7351

    PubMed  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B & Comai L (1987)Agrobacterium mediated transformation and regeneration ofPopulus. Mol. Gen. Genet. 206: 192–199

    Article  Google Scholar 

  • Fiola JA, Hassan MA, Swartz HJ, Bors RH & McNicol RJ (1990) The effect of thidiazuron, light fluence rate and kanamycin on shoot regeneration from excisedRubus cotyledons andin vitro leaves. Plant Cell Tiss. Org. Cult. 20: 223–228.

    Google Scholar 

  • Graham J, McNicol RJ & Kumar A (1990) Use of the GUS gene as a selectable marker forAgrobacterium-mediated transformation ofRubus. Plant Cell Tiss. Org. Cult. 20: 35–39

    Article  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ & Bevan M (1989) Genetic transformation of apple (Malus pumila) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661

    Google Scholar 

  • James DJ, Passey AJ & Barbara DJ (1990)Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria × ananassa Duch.) using disarmed binary vectors. Plant Sci. 69: 79–94

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405

    Google Scholar 

  • Maniatis T, Fritsch EF & Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab, Cold Spring Harbor, NY

    Google Scholar 

  • Mattews H & Litz RE (1990) Kanamycin sensitivity of mango somatic embryos. HortScience 25: 965–966

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nehra NS, Chibbar N, Kartha KK, Datla RSS, Crosby WL & Stushnoff C (1990) Genetic transformation of strawberry byAgrobacterium tumefaciens using a leaf regeneration system. Plant Cell Rep. 9: 293–298

    Google Scholar 

  • Otten L & Schilperoort RA (1978) A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities. Biochem. Biophys. Acta 517: 497–500

    Google Scholar 

  • Smigocki AM & Hammerschlag FA (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain ofAgrobacterium. J. Amer. Soc. Hort. Sci. 116: 1092–1097

    Google Scholar 

  • Swartz HJ, Bors RH, Mohamed FA & Naess SK (1990) The effect ofin vitro pretreatment on subsequent shoot organogenesis from excisedRubus andMalus leaves. Plant Cell Tiss. Org. Cult. 21: 179–184

    Article  Google Scholar 

  • Watson JC & Thompson WF (1988) Purification and restriction endonuclease analysis of plant nuclear DNA. In: Weissbach A & Weissbach H (eds) Methods for Plant Molecular Biology (pp 57–75). Academic Press, Orlando, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, M.A., Swartz, H.J., Inamine, G. et al. Agrobacterium tumefaciens-mediated transformation of severalRubus genotypes and recovery of transformed plants. Plant Cell Tiss Organ Cult 33, 9–17 (1993). https://doi.org/10.1007/BF01997592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01997592

Key words

Navigation