Skip to main content
Log in

Heat capacity of solid state proteins

I. Thermal analysis

  • Biological/Life Sciences
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

In an ongoing effort to understand the thermodynamic properties of proteins, ovalbumin, lactoglobulin, lysozyme are studied by adiabatic and differential scanning calorimetry over wide temperature ranges. The heat capacities of the samples in their pure, solid states are linked to an approximate vibrational spectrum with the ATHAS analysis that makes use of known group vibrations and a set of parameters, Θ1 and Θ3, of the Tarasov function for the skeletal vibrations. Good agreement is found between experiment and calculation with rms errors mostly within ±3%. The analyses were also carried out with an empirical addition scheme using data from polypeptides of naturally occurring amino acids. Due to space limitation, only selected results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wunderlich, Pure and Appl. Chem., 67 (1995) 1019. For the full experimental heat capacities: U. Gaur, S.-F. Lau, H.-C. Shu, B. B. Wunderlich, M. Varma-Nair and B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (1981) 89, 1 19, 1001, 1051; I1 (1982) 313, 1065; 12 (1983) 29, 65, 91; and 20 (1991) 349. Further details: World Wide Web address on the Internet: http://funnelweb.utcc.utk.edu/≈athas.

    Article  CAS  Google Scholar 

  2. K. Roles and B. Wunderlich, Biopolymers, 31 (1991) 477.

    Article  CAS  Google Scholar 

  3. K. Roles, A. Xenopoulos and B. Wunderlich, Biopolymers, 33 (1993) 753.

    Article  CAS  Google Scholar 

  4. K. Roles and B. Wunderlich, J. Polym. Sci. B: Polym. Phys., 31 (1993) 477.

    Article  Google Scholar 

  5. G. Zhang, B. V. Lebedev, B. Wunderlich and Jing-ye Zhang, J. Polym. Sci., B: Polym. Phys., 33 (1995) 2449; G. Zhang, S. Gerdes and B. Wunderlich, Macro. Chem. Phys., accepted.

    Article  CAS  Google Scholar 

  6. A. Xenopoulos, K. Roles and B. Wunderlich, Polymer, 34 (1993) 2559.

    Article  CAS  Google Scholar 

  7. A. Xenopoulos, J. Cheng and B. Wunderlich, Mol. Cryst. Liq. Cryst., 226 (1993) 87; Y. Jin, J. Cheng, B. Wunderlich, S. Z. D. Cheng and M. A. Yandrasits, Polymers for Advanced Technology, 5 (1994) 785; J. Cheng, Y. Jin, G. Liang, B. Wunderlich and H. G. Wiedemann, Mol. Cryst. Liq. Cryst., 213 (1992) 237.

    Article  CAS  Google Scholar 

  8. J. O. Hutchens, A. G. Cole, and J. W. Stout, J. Biol. Chem., 244 (1969) 26.

    CAS  Google Scholar 

  9. E. L. Andronikashvili, G. M. Mrevlishvili, G. S. Japaridze, V. M. Sokhadze and K. A. Kvavadze, Biopolymers, 15 (1976) 1991.

    Article  CAS  Google Scholar 

  10. A. R. Haly and J. W. Snaith, Biopolymers, 10 (1971) 1681.

    Article  CAS  Google Scholar 

  11. H. J. Hinz, C. Steis, T. Vogl, X. Meyer, M. Rinnair and R. Ledermüller, Pure and Appl. Chem., 65 (1993) 947.

    Article  CAS  Google Scholar 

  12. I. V. Sochava and O. I. Smirnova, Food Hydrocolloids, 6 (1993) 513.

    Article  CAS  Google Scholar 

  13. Y. Jin and B. Wunderlich, J. Thermal Anal., 36 (1990) 765.

    Article  CAS  Google Scholar 

  14. Y. Jin and B. Wunderlich, J. Thermal Anal., 36 (1990) 1519.

    Article  CAS  Google Scholar 

  15. Y. Jin and B. Wunderlich, J. Thermal Anal., 38 (1990) 2257.

    Article  Google Scholar 

  16. D. C. Ginnings and G. T. Furukawa, J. Amer. Chem. Soc., 75 (1953) 522.

    Article  CAS  Google Scholar 

  17. Yu. V. Cheban, S.-F. Lau and B. Wunderlich, Colloid Polym. Sci., 260 (1982) 9.

    Article  CAS  Google Scholar 

  18. S.-F. Lau and B. Wunderlich, J. Thermal Anal., 28 (1982) 59.

    Article  Google Scholar 

  19. R. Pan, M. Varma-Nair and B. Wunderlich, J. Thermal Anal., 35 (1989) 951.

    Article  Google Scholar 

  20. G. Zhang and B. Wunderlich, J. Thermal Anal., accepted (1996).

  21. U. Gaur, M.-Y. Cao, R. Pan and B. Wunderlich, J. Thermal Anal., 31 (1986) 421; R. Pan, M.-Y. Cao and B. Wunderlich, J. Thermal Anal., 31 (1986) 1319.

    Article  CAS  Google Scholar 

  22. R. Helig, R. Muraskowsky, C. Kloepfer and J. L. Mandel, Nucleic Acids Res., 10 (1982) 4363.

    Article  Google Scholar 

  23. M. O. Dayhoff and R. V. Eck (1967–68) “Atlas of Sequence and Structure,” National Biomedical Research Foundation.

  24. WWW address on the Internet: http://expasy.hcuge.ch/sprot/

  25. J. Edelman, J. Biopolymers, 32 (1992) 209.

    Article  CAS  Google Scholar 

  26. A. Xenopoulos and B. Wunderlich, Polymer, 31 (1990) 1260.

    Article  CAS  Google Scholar 

  27. H. S. Bu, S. Z. D. Cheng and B. Wunderlich, J. Phys. Chem., 91 (1987) 4179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Division of Materials Research, NSF, Polymers Program, Grant # DMR 90-00520 and the Division of Materials Sciences, Office of Basic Energy Sciences, DOE, under Contract number DE-AC05-84OR21400 with Lockheed Martin Energy Systems, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Wunderlich, B. Heat capacity of solid state proteins. Journal of Thermal Analysis 49, 823–829 (1997). https://doi.org/10.1007/BF01996766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01996766

Keywords

Navigation