Skip to main content
Log in

Interpretation of current-voltage relationships for “active” ion transport systems: II. Nonsteady-state reaction kinetic analysis of class-I mechanisms with one slow time-constant

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The temporal behavior of current through a biological membrane can display more than one time constant. This study represents the reaction kinetic analysis of the nonsteady-state behavior of a class of membrane transporters with one voltage-sensitive reaction step, one dominant (large) time constant, but arbitrary reaction scheme of the voltage-insensitive part of transporter. This class of transporters which shows uniform behavior under steady-state conditions splits into two fundamentally different subclasses, when nonsteady-state behavior is examined: Subclass (Model) A: the slow reaction controls the redistribution of states within the reaction cycle upon an (electrical) perturbation; model B: this redistribution is fast but the transporting cycle can slowly equilibrate with an inactive, “lazy” state. The electrical appearance of model A in a membrane requires specific features of the transporter in the membrane: high densities (10−8 mol m−2), low turnover rates (103 sec−1) and high stoichiometry (z>1) of transported charges per cycle. The kinetics of both models can formally be described by an equivalent circuit with a steady-state slope conductance (G 0) shunted by a (transporter specific) capacitance (G t ) and a conductance (C t ) in series. The voltage dependence ofC t and ofG t can be used to identify model A or model B. In the range of maximumG 0 in the steady-state current-voltage curve,C t in model A displays a maximum (which may characteristically split into two maxima) and vanishes for larger voltage displacements.C t can be used for the determination of transporter densities in the membrane. In contrast to model A, the appearance of model B in the nonsteady-state behavior of a membrane does not depend on high densities, low turnover rates and high stoichiometry; it can, therefore, be found also in membranes with sparsely distributed, rapidly transporting channels of any stoichiometry. Particular to model B is a change in the signs ofC t andG t at the reversal potential of the steady-state current-voltage relationship. This implies switching from capacitive to inductive behavior (under vanishing amplitudes). Also in model B, the nonsteady-state effects disappear for large voltage displacements from the reversal potential. Model B is expected to occur preferably in transporters subject to metabolic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171–191

    Article  Google Scholar 

  • Bisson, M.A., Walker, N.A. 1980. TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH.J. Membrane Biol. 56:1–7

    Article  Google Scholar 

  • Blinks, L.R., Skow, R.K. 1941. The electrical capacity ofValonia. Direct current measurements.J. Gen. Physiol. 24:247–262

    Article  Google Scholar 

  • Bode, H.W. 1964. Network Analysis and Feed-back Amplifier Design. Chap. XIV. D. Van Nostrand, Princeton, N.J.

    Google Scholar 

  • Bradley, J., Williams, E.J. 1967. Voltage-controllable negative differential resistance inNitella translucens.Biochim. Biophys. Acta 135:1078–1080

    PubMed  Google Scholar 

  • Capellos, C., Bielski, B.H.J. 1972. Kinetic Systems. Wiley-Interscience, New York

    Google Scholar 

  • Cole, K.S. 1968. Membranes, Ions and Impulses. University of California Press

  • Coster, H.G.L. 1965. A quantitative analysis of voltagecurrent relationships of fixed charge membranes and the associated property of “punch through”.Biophys. J. 5:669–686

    PubMed  Google Scholar 

  • Coster, H.G.L. 1973. The douple fixed charge membrane. Low frequency dielectric dispersion.Biophys. J. 13:118–132

    PubMed  Google Scholar 

  • Curtis, H.J., Cole, K.S. 1937. Transverse electric impedance ofNitella.J. Gen. Physiol. 21:189–201

    Article  Google Scholar 

  • Curtis, H.J., Cole, K.S. 1938. Transverse electric impedance of the squid giant axon.J. Gen. Physiol. 21:757

    Article  Google Scholar 

  • Eigen, M. 1968. New looks and outlooks on physical enzymology.Q. Rev. Biophys. 1:3

    PubMed  Google Scholar 

  • Findlay, G.P. 1970. Membrane electrical behavior inNitellopsis obtusa.Aust. J. Biol. Sci. 23:1033–1045

    Google Scholar 

  • Gradmann, D. 1975. Analog circuit of theAcetabularia membrane.J. Membrane Biol. 25:183–208

    Article  Google Scholar 

  • Gradmann, D., Hansen, U.P., Slayman, C.L. 1982. Reaction-kinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia.In: Electrogenic Ion Pumps. C.L. Slayman, editor.Curr. Top. Membr. Transp. 16:257–276. Academic Press, New York

    Google Scholar 

  • Hansen, U.-P. 1982. Kinetic analysis of regulation of membrane transport.In: Membranes and Transpor. A. Martonosi, editor. pp. 639–644. Plenum Press, New York

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of Class-I mechanisms.J. Membrane Biol. 63:165–190

    Article  Google Scholar 

  • Hansen, U.P., Gradmann, D., Tittor, J., Sanders, D., Slayman, C.L. 1982. Kinetic analysis of active transport: Reduction models.In: Plasmalemma and Tonoplast: Their Functions in the Plant Cell. D. Marmé, E. Marrè, and R. Hertel, editors. pp. 77–84. Elsevier Biomedical, Amsterdam

    Google Scholar 

  • Inoue, I., Ishima, Y., Horie, H. 1971. Properties of excitable membrane produced on the surface of protoplasmic drop inNitella, Proc. Jpn. Acad. 47:549–553

    Google Scholar 

  • Kishimoto, U. 1966. Hyperpolarizing response inNitella internodes.Plant Cell Physiol. 7:429–439

    Google Scholar 

  • Kishimoto, U. 1974. Transmembrane impedance of theChara cell.Jpn. J. Physiol. 24:403–417

    PubMed  Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y., Ohkawa, T. 1982. An improved method for determining the ionic conductance and capacitance of the membrane ofChara corallina.Plant Cell Physiol. 23:1041–1054

    Google Scholar 

  • Kolb, H.-A., Frehland, E. 1980. Noise-current generated by carrier mediated ion-transport at non-equilibrium.Biophys. Chem. 12:21–34

    Article  Google Scholar 

  • Kolb, H.-A., Läuger, P. 1978. Spectral analysis of current noise generated by carrier-mediated ion transport.J. Membrane Biol. 41:167–187

    Article  Google Scholar 

  • Läuger, P. 1980. Kinetic properties of ion carriers and channels (Topical Review).J. Membrane Biol. 57:163–178

    Article  Google Scholar 

  • Lucas, W.J. 1976. Plasmalemma transport of HCO 3 and OH inChara corallina: Non-antiporter systems.J. Exp. Bot. 27:19–31

    Google Scholar 

  • Matsumoto, N., Inoue, I., Kishimoto, U. 1970. The electrical impedance of squid axon membrane measured between internal and external electrodes.Jpn. J. Physiol. 20:516–526

    PubMed  Google Scholar 

  • Milsum, J.H. 1966. Biological Control Systems Analysis. McGraw Hill, New York

    Google Scholar 

  • Mummert, H., Hansen, U.P., Gradmann, D. 1981. Current-voltage curve of electrogenic Cl pump predicts voltage-dependent Cl efflux inAcetabularia.J. Membrane Biol. 62:139–148

    Article  Google Scholar 

  • Ohkawa, T., Kishimoto, U. 1974. The electromotive force of theChara membrane during the hyperpolarizing response.Plant Cell Physiol. 15:1039–1054

    Google Scholar 

  • Riggs, D.S. 1966. Control Theory and Physiological Feed-Back Mechanisms. The Williams and Wilkins Co., Baltimore

    Google Scholar 

  • Roberts, G.E., Kaufmann, H. 1966. Table of Laplace transforms. W. B. Saunders, Philadelphia and London

    Google Scholar 

  • Sandblom, J., Walker, J.L., Jr., Eisenman, G. 1972. The transient response and impedance locus of a mobile site membrane.Biophys. J. 12:587–596

    PubMed  Google Scholar 

  • Sanders, D., Hansen, U.-P. 1981. Mechanism of Cl-transport at the plasma membrane ofChara corallina. II. Transinhibition and the determination of H+/Cl binding order from a reaction kinetic model.J. Membrane Biol. 58:139–153

    Article  Google Scholar 

  • Sanders, D., Hansen, U.-P., Slayman, C.L. 1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells.Proc. Natl. Acad. Sci. USA 78:5903–5907

    PubMed  Google Scholar 

  • Skierczynska, J., Spiewla, E., Zolnierczuk, R., Bulanda, W., Wardak, A. 1973. The measurement of the membrane resistance of Characeae by alternating and direct currents.J. Exp. Bot. 24:1015–1023

    Google Scholar 

  • Smith, R.L., Zinn, K., Cantley, L.C. 1980. A study of the vanadate-trapped state of the (Na, K)-ATPase.J. Biol. Chem. 255:9852–9859

    PubMed  Google Scholar 

  • Thomas, R.C. 1978. Ion-sensitive intracellular microelectrodes. Academic Press, London, New York, San Francisco

    Google Scholar 

  • Tittor, J., Hansen, U.-P., Gradmann, D. 1983. Impedance of the electrogenic Cl pump inAcetabularia: Electrical frequency entrainements, voltage-sensitivity, and reaction-kinetic interpretation.J. Membrane Biol. 75:129–139

    Google Scholar 

  • Tittor, J., Hansen, U.-P., Gradmann, D., Martensen, H.J. 1982. Non-steady state kinetic behavior of Class I transport systems observed as “pump capacitance” in electrical impedance of biological membranes.Hoppe Seyler's Z. Physiol. Chem. 363:908

    Google Scholar 

  • Zimmermann, U., Büchner, K.-H., Benz, R. 1982. Transport properties of mobile charges in algal membranes: Influence of pH and turgor pressure.J. Membrane Biol. 67:183–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, U.P., Tittor, J. & Gradmann, D. Interpretation of current-voltage relationships for “active” ion transport systems: II. Nonsteady-state reaction kinetic analysis of class-I mechanisms with one slow time-constant. J. Membrain Biol. 75, 141–169 (1983). https://doi.org/10.1007/BF01995634

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995634

Key Words

Navigation