Skip to main content
Log in

Role of voltage-dependent ionic currents in coupling glucose stimulation to insulin secretion in canine pancreatic islet B-Cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Glucose-induced electrical activity in canine pancreatic islet B cells is distinct from that in rodent islets, though both display Ca2+-dependent insulin secretion. Rodent islet B cells undergo regular bursts of Ca2+-dependent action potentials, while canine islet B cells generate isolated Na+-dependent action potentials which often give way to a plateau depolarization. Here we present evidence to reconcile the species difference in electrical activity with the similarity of Ca2+ dependence of secretion. (i) In canine B cells increasing glucose concentrations produce membrane depolarization and increasing frequency of Nao-dependent action potentials until a background membrane potential (∼-40mV) is reached where Na+ currents are inactivated. (ii) Voltage-dependent Ca2+ currents are present which are activated over the voltage excursion of the action potential (−50 to +20 mV) and inactivate slowly, (over seconds) in the range of the plateau depolarization (−40 to −25 mV). Hence, they are available to contribute to both phases of depolarization. (iii) Tetrodotoxin (TTX) reduces by half an early transient phase of glucosestimulated insulin secretion but not a subsequent prolonged plateau phase. The transient phase of secretion often corresponds well in time to the period of initial high frequency action potential activity. These latter results suggest that in canine B cells voltagedependent Na+ and Ca2+ currents mediate biphasic glucose-induced insulin secretion. The early train of Na+-dependent action potentials, by transiently activating Ca2+ channels and allowing pulsatile Ca2+ entry, may promote an early transient phase of insulin secretion. The subsequent sustained plateau depolarization, by allowing sustained Ca2+ entry, may permit steady insulin release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashcroft, F.M., Kelly, R.P., Smith, P.A. 1990. Two types of Ca2+ channels in rat pancreatic β-cells.Pfluegers Arch. 415:504–506

    Google Scholar 

  • Ashcroft, F.M., Rorsman, P. 1991. Electrophysiology of the pancreatic β cell.Prog. Biophys. Mol. Biol. 54:87–143

    Google Scholar 

  • Cook, D.L., Satin, L.S., Hopkins, W.F. 1991. Pancreatic B-cells are bursting, but how?Trends Neurosci. 14:411–413

    PubMed  Google Scholar 

  • Dunne, M.J., Yule, D.I., Gallacher, D.V., Petersen, O.H. 1990. Stimulant-evoked depolarization and increase in [Ca2+]i in insulin-secreting cells is dependent on external Na+ J. Membrane Biol. 113:131–138

    Google Scholar 

  • Eckert, R., Chad, J.E. 1984. Inactivation of Ca2+ channels.Prog. Biophys. Mol. Biol. 44:215–267

    PubMed  Google Scholar 

  • Falke, L.C., Gillis, K.D., Pressel, D.M., Misler, S. 1989. ‘Perforated patch recording’ allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet B cells.FEBS Lett. 251:167–172

    PubMed  Google Scholar 

  • Gillis, K.D., Gee, W.M., Hammoud, A., McDaniel, M.L., Falke, L.C., Misler, S. 1989. Effects of sulfonamides on a metaboliteregulated ATPi-sensitive K+ channel in rat pancreatic B-cells.Am. J. Physiol. 257:C1119-C1127

    PubMed  Google Scholar 

  • Gillis, K.D., Misler, S. 1991. Single cell assay of exocytosis from rat pancreatic islet B cells using “perforated patch”, recording.Biophys. J. 59:130a

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Google Scholar 

  • Henquin, J.C. 1990. Role of voltage- and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells.Pfluegers Arch. 416:568–572

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland (MA)

    Google Scholar 

  • Hopkins, W.F., Satin, L.S., Cook, D.L. 1991. Inactivation kinetics and pharmacology distinguish two calcium currents in mouse pancreatic B cells.J. Membrane Biol 119:229–239

    Google Scholar 

  • Horn, R., Marty, A. 1988. Muscarinic activation of ionic currents measured by a new whole-cell recording method.J. Gen. Physiol. 92:145–159

    PubMed  Google Scholar 

  • Korn, S.J., Bolden, A., Horn, R. 1991. Control of action potentials and Ca2+ influx by the Ca2+-dependent chloride current in mouse pituitary cells.J. Physiol. 439:423–437

    PubMed  Google Scholar 

  • Korn, S.J., Horn, R. 1989. Influence of sodium-calcium exchange on calcium current rundown, and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording.J. Gen. Physiol. 94:789–812

    PubMed  Google Scholar 

  • McCleskey, E.W., Fox, A.P., Feldman, D., Tsien, R.W., 1986 Different types of calcium channels.J. Exp. Biol. 124:177–190

    PubMed  Google Scholar 

  • Misler, S., Falke, L.C., Gillis, K., McDaniel, M.L. 1986. A metabolite-regulated potassium channel in rat pancreatic B cells.Proc. Natl. Acad. Sci. USA 83:7119–7123

    PubMed  Google Scholar 

  • Misler, S., Gee, W.M., Gillis, K.D., Scharp, D.W., Falke, L.C. 1989. Metabolite-regulated ATP-sensitive K+ channel in human pancreatic islet cells.Diabetes 38:422–427

    PubMed  Google Scholar 

  • Misler, S., Pressel, D.M., Gillis, K.D. 1991. Depolarizationsecretion coupling in pancreatic islet B cells: Do diverse excit-ability patterns support insulin secretion?In:Proceedings of the 14th Congress of International Diabetes Federation, Elsevier, Amsterdam (in press)

    Google Scholar 

  • Plant, T.D. 1988. Properties and calcium dependent inactivation of calcium currents in cultured mouse pancreatic β-cells.J. Physiol. 404:731–747

    PubMed  Google Scholar 

  • Plasman, P.O., Lebrun, P., Herchuelz, A. 1990. Characterization of the process of sodium-calcium exchange in pancreatic islet cells.Am. J. Physiol. 259:E844-E850

    PubMed  Google Scholar 

  • Pressel, D.M., Misler, S. 1989. Ion channel currents in canine pancreatic islet B cells.Biophys. J. 55:540a

    Google Scholar 

  • Pressel, D.M., Misler, S. 1990. Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells.J. Membrane Biol. 116:273–280

    Google Scholar 

  • Pressel, D.M., Misler, S. 1991. Role of voltage-dependent Na+ and Ca2+ currents in coupling glucose stimulation to insulin secretion in canine pancreatic islet B cells.Biophys. J. 59:87a

    Google Scholar 

  • Ricordi, C., Lacy, P.E., Finke, E.H., Olack, B.J., Scharp, D.W. 1988. Automated method for isolation of human pancreatic islets.Diabetes 37:413–420

    PubMed  Google Scholar 

  • Rorsman, P., Ashcroft, F.M., Trube, G. 1988. Single Ca currents in mouse pancreatic B cells.Pfluegers Arch. 412:597–603

    Google Scholar 

  • Rorsman, P., Hellman, B. 1988. Voltage-activated currents in guinea pig pancreatic alpha 2 cells.J. Gen. Physiol. 91:223–242

    PubMed  Google Scholar 

  • Rorsman, P., Trube, G. 1986. Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions.J. Physiol. 374:531–550

    PubMed  Google Scholar 

  • Sala, S., Parsey, R.V., Cohen, A.S., Matteson, D.R. 1991. Analysis and use of the perforated patch technique for recording ionic currents in pancreatic β-cells.J. Membrane Biol. 122:177–187

    Google Scholar 

  • Satin, L.S., Cook, D.L. 1988. Evidence for two calcium currents in insulin secreting cells.Pfluegers Arch. 411:401–409

    Google Scholar 

  • Satin, L.S., Hopkins, W.F., Fatherazi, S., Cook, D.L. 1989. Expression of a rapid, low-voltage threshold, K+ current in insulin-secreting cells is dependent, on intracellular calcium buffering.J. Membrane Biol. 112:213–222

    Google Scholar 

  • Scharp, D.W., Chern H.T., McCollough, C., Gingerich, R. 1989. Reduced insulin response from canine islets.Diabetes 38:209a

    PubMed  Google Scholar 

  • Sehlin, J. 1987. Evidence for voltage-dependent Cl permeability in mouse pancreatic beta-cells.Biosci. Rep. 7:67–72

    PubMed  Google Scholar 

  • Smith, P.A., Bokvist, K., Arkhammar, P., Berggren, P.O., Rorsman, P. 1990. Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic β-cells.J. Gen. Physiol. 95:1041–1059

    PubMed  Google Scholar 

  • Sturgess, N.C., Carrington, C.A., Hales, C.N., Ashford, M.L.J. 1987. Nucleotide-sensitive ion channels in human insulin producing tumor cells.Pfluegers Arch. 410:169–172

    Google Scholar 

  • Tabcharani, J.A., Misler, S. 1989. Ca2+-activated K+ channels in rat pancreatic islet B cells: Permeation, gating, and blockade by cations.Biochim. Biophys. Acta 982:62–72

    PubMed  Google Scholar 

  • Trube, G.P., Rorsman, P., Ohno-Shosaku, T. 1986. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic B-cells.Pfluegers Arch. 407:493–499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pressel, D.M., Misler, S. Role of voltage-dependent ionic currents in coupling glucose stimulation to insulin secretion in canine pancreatic islet B-Cells. J. Membrain Biol. 124, 239–253 (1991). https://doi.org/10.1007/BF01994357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01994357

Key Words

Navigation