Skip to main content

Calcium Signaling in the Islets

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.
  • 256 Accesses

Abstract

Easy access to rodent insulinoma cells and rodent islets and the ease of measuring Ca2+ by fluorescent indicators have resulted in an overflow of data that have clarified details of Ca2+ signaling in the rodent islets. Our understanding of the mechanisms and the roles of Ca2+ signaling in the human islets, under physiological conditions, has been influenced by extrapolation of the rodent data obtained under suboptimal experimental conditions. More recently, electrophysiological and Ca2+ studies have elucidated the ion channel repertoire relevant for Ca2+ signaling in the human islets and have examined their relative contributions. Several channels belonging to the transient receptor potential (TRP) family are present in the β-cells. Intracellular Ca2+ channels and Ca2+-induced Ca2+ release (CICR) add new dimension to the complexity of Ca2+ signaling in the human β-cells. While a lot more remains to be learnt about the mechanisms of generation and decoding of Ca2+ signals, much de-learning will also be needed. Human β-cells do not have a resting state in the normal human body even under physiological fasting conditions. Their membrane potential under physiologically relevant resting conditions is ~ −50 mV. Biphasic insulin secretion is an experimental epiphenomenon unrelated to the physiological pulsatile insulin secretion into the portal vein in the human body. Human islets show a wide variety of electrical activities, and patterns of [Ca2+]i changes, whose roles in mediating pulsatile secretion of insulin remain unclear. Future studies need to be directed toward a better understanding of Ca2+ signaling in the human islet cells in the context of the pathogenesis, prevention, and treatment of human diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ainscow EK, Rutter GA (2002) Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism. Diabetes 51(Suppl 1):S162–S170

    CAS  PubMed  Google Scholar 

  • Akiba Y, Kato S, Katsube KI, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225

    CAS  PubMed  Google Scholar 

  • Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW (2013) The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. Eur J Pharmacol 704:15–22

    CAS  PubMed  Google Scholar 

  • Bari MR, Akbar S, Eweida M, Kuhn FJ, Gustafsson AJ, Luckhoff A, Islam MS (2009) H2O2-induced Ca2+ influx and its inhibition by N-(p-amylcinnamoyl) anthranilic acid in the beta-cells: involvement of TRPM2 channels. J Cell Mol Med 13:3260–3267

    PubMed  Google Scholar 

  • Barnett DW, Pressel DM, Misler S (1995) Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch 431:272–282

    CAS  PubMed  Google Scholar 

  • Beauvois MC, Merezak C, Jonas JC, Ravier MA, Henquin JC, Gilon P (2006) Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am J Physiol Cell Physiol 290:C1503–C1511

    CAS  PubMed  Google Scholar 

  • Bergsten P, Hellman B (1993) Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 42:670–674

    CAS  PubMed  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    CAS  PubMed  Google Scholar 

  • Bokvist K, Eliasson L, Ämmälä C, Renström E, Rorsman P (1995) Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J 14:50–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628

    CAS  PubMed  Google Scholar 

  • Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D (2010) TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch 460:69–76

    CAS  PubMed  Google Scholar 

  • Bruton JD, Lemmens R, Shi CL, Persson-Sjögren S, Westerblad H, Ahmed M, Pyne NJ, Frame M, Furman BL, Islam MS (2003) Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 17:301–303

    CAS  PubMed  Google Scholar 

  • Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, Antonioli B, Fruscione F, Magnone M, Scarfi S, De Flora A, Zocchi E (2008) Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger. J Biol Chem 283:32188–32197

    CAS  PubMed  Google Scholar 

  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS (2012) Expression of Transient Receptor Potential Ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One 7:e38005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51:2252–2262

    CAS  PubMed  Google Scholar 

  • Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41:51–61

    CAS  PubMed  Google Scholar 

  • Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca(2+) entry. Curr Top Membr 71:149–179

    CAS  PubMed  Google Scholar 

  • Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci U S A 107:5208–5213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuesta-Munoz AL, Huopio H, Otonkoski T, Gomez-Zumaquero JM, Nanto-Salonen K, Rahier J, Lopez-Enriquez S, Garcia-Gimeno MA, Sanz P, Soriguer FC, Laakso M (2004) Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes 53:2164–2168

    CAS  PubMed  Google Scholar 

  • Davalli AM, Biancardi E, Pollo A, Socci C, Pontiroli AE, Pozza G, Clementi F, Sher E, Carbone E (1996) Dihydropyridine-sensitive and -insensitive voltage-operated calcium channels participate in the control of glucose-induced insulin release from human pancreatic beta cells. J Endocrinol 150:195–203

    CAS  PubMed  Google Scholar 

  • Dehaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    CAS  PubMed  Google Scholar 

  • Dixit SS, Wang T, Manzano EJ, Yoo S, Lee J, Chiang DY, Ryan N, Respress JL, Yechoor VK, Wehrens XH (2013) Effects of CaMKII-mediated phosphorylation of ryanodine receptor type 2 on islet calcium handling, insulin secretion, and glucose tolerance. PLoS One 8:e58655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dror V, Kalynyak TB, Bychkivska Y, Frey MH, Tee M, Jeffrey KD, Nguyen V, Luciani DS, Johnson JD (2008) Glucose and endoplasmic reticulum calcium channels regulate HIF-1beta via presenilin in pancreatic beta-cells. J Biol Chem 283:9909–9916

    CAS  PubMed  Google Scholar 

  • Du J, Xie J, Yue L (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci U S A 106:7239–7244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dyachok O, Gylfe E (2001) Store-operated influx of Ca(2+) in pancreatic beta-cells exhibits graded dependence on the filling of the endoplasmic reticulum. J Cell Sci 114:2179–2186

    CAS  PubMed  Google Scholar 

  • Dyachok O, Gylfe E (2004) Ca(2+)-induced Ca(2+) release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A and triggers exocytosis in pancreatic beta-cells. J Biol Chem 279:45455–45461

    CAS  PubMed  Google Scholar 

  • Dyachok O, Tufveson G, Gylfe E (2004) Ca(2+)-induced Ca(2+) release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic beta-cells. Cell Calcium 36:1–9

    CAS  PubMed  Google Scholar 

  • Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37

    CAS  PubMed  Google Scholar 

  • Eisfeld J, Luckhoff A (2007) TRPM2. Handb Exp Pharmacol 179:237–252

    CAS  PubMed  Google Scholar 

  • Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247–289

    CAS  PubMed  Google Scholar 

  • Fruhwald J, Camacho LJ, Dembla S, Mannebach S, Lis A, Drews A, Wissenbach U, Oberwinkler J, Philipp SE (2012) Alternative splicing of a protein domain indispensable for function of transient receptor potential melastatin 3 (TRPM3) ion channels. J Biol Chem 287:36663–36672

    PubMed Central  PubMed  Google Scholar 

  • Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC (1993) Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest 91:871–880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilon P, Henquin JC (1992) Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem 267:20713–20720

    CAS  PubMed  Google Scholar 

  • Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604

    CAS  PubMed  Google Scholar 

  • Goodner CJ, Hom FG, Koerker DJ (1982) Hepatic glucose production oscillates in synchrony with the islet secretory cycle in fasting rhesus monkeys. Science 215:1257–1260

    CAS  PubMed  Google Scholar 

  • Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25:213–223

    PubMed  Google Scholar 

  • Grimberg A, Ferry RJ Jr, Kelly A, Koo-McCoy S, Polonsky K, Glaser B, Permutt MA, Aguilar-Bryan L, Stafford D, Thornton PS, Baker L, Stanley CA (2001) Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 50:322–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafsson AJ, Ingelman-Sundberg H, Dzabic M, Awasum J, Nguyen KH, Östenson CG, Pierro C, Tedeschi P, Woolcott O, Chiounan S, Lund PE, Larsson O, Islam MS (2005) Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca2+ signaling events in pancreatic beta-cells. FASEB J 19:301–303

    CAS  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    CAS  PubMed  Google Scholar 

  • Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G, Dufer M (2005) Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1-/- mice. Diabetologia 48:913–921

    CAS  PubMed  Google Scholar 

  • Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Lückhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hellman B, Gylfe E, Bergsten P, Grapengiesser E, Lund PE, Berts A, Tengholm A, Pipeleers DG, Ling Z (1994) Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia 37(Suppl 2):S11–S20

    CAS  PubMed  Google Scholar 

  • Hellman B, Gylfe E, Bergsten P, Grapengiesser E, Berts A, Liu YJ, Tengholm A, Westerlund J (1997) Oscillatory signaling and insulin release in human pancreatic beta-cells exposed to strontium. Endocrinology 138:3161–3165

    CAS  PubMed  Google Scholar 

  • Henquin JC, Meissner HP, Schmeer W (1982) Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflugers Arch 393:322–327

    CAS  PubMed  Google Scholar 

  • Henquin JC, Dufrane D, Nenquin M (2006) Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55:3470–3477

    CAS  PubMed  Google Scholar 

  • Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501(Pt 1):59–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I (2009) Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells. Diabetes 58:174–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmkvist J, Tojjar D, Almgren P, Lyssenko V, Lindgren CM, Isomaa B, Tuomi T, Berglund G, Renstrom E, Groop L (2007) Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion. Diabetologia 50:2467–2475

    CAS  PubMed  Google Scholar 

  • Holz GG, Leech CA, Habener JF (1995) Activation of a cAMP-regulated Ca2+-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1. J Biol Chem 270:17749–17757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF (1999) cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic b-cells. A Ca2+ signalling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem 274:14147–14156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idevall-Hagren O, Jakobsson I, Xu Y, Tengholm A (2013) Spatial control of Epac2 activity by cAMP and Ca2+-mediated activation of Ras in pancreatic beta cells. Sci Signal 6:ra29-6

    Google Scholar 

  • Islam MS (2002) The ryanodine receptor calcium channel of b-cells: molecular regulation and physiological significance. Diabetes 51:1299–1309

    CAS  PubMed  Google Scholar 

  • Islam MS (2011) TRP channels of islets. Adv Exp Med Biol 704:811–830

    CAS  PubMed  Google Scholar 

  • Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekström TJ, Westerblad H, Andrade FH, Berggren PO (1998) In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci U S A 95:6145–6150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jabin FA, Kannisto K, Bostrom A, Hadrovic B, Farre C, Eweida M, Wester K, Islam MS (2012) Insulin-secreting INS-1E cells express functional TRPV1 channels. Islets 4:56–63

    Google Scholar 

  • Johnson JD, Misler S (2002) Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc Natl Acad Sci U S A 99:14566–14571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JD, Han Z, Otani K, Ye H, Zhang Y, Wu H, Horikawa Y, Misler S, Bell GI, Polonsky KS (2004a) RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J Biol Chem 279:24794–24802

    CAS  PubMed  Google Scholar 

  • Johnson JD, Kuang S, Misler S, Polonsky KS (2004b) Ryanodine receptors in human pancreatic beta cells: localization and effects on insulin secretion. FASEB J 18:878–880

    CAS  PubMed  Google Scholar 

  • Johnson JD, Ford EL, Bernal-Mizrachi E, Kusser KL, Luciani DS, Han Z, Tran H, Randall TD, Lund FE, Polonsky KS (2006) Suppressed insulin signaling and increased apoptosis in CD38-null islets. Diabetes 55:2737–2746

    CAS  PubMed  Google Scholar 

  • Jones PM, Persaud SJ (1993) Arachidonic acid as a second messenger in glucose-induced insulin secretion from pancreatic beta-cells. J Endocrinol 137:7–14

    CAS  PubMed  Google Scholar 

  • Jung SR, Reed BJ, Sweet IR (2009) A highly energetic process couples calcium influx through L-type calcium channels to insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 297:E717–E727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaddis JS, Olack BJ, Sowinski J, Cravens J, Contreras JL, Niland JC (2009) Human pancreatic islets and diabetes research. JAMA 301:1580–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahl S, Malfertheiner P (2004) Exocrine and endocrine pancreatic insufficiency after pancreatic surgery. Best Pract Res Clin Gastroenterol 18:947–955

    PubMed  Google Scholar 

  • Kang G, Holz GG (2003) Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells. J Physiol 546:175–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG, Holz GG (2003) Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem 278:8279–8285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566:173–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kermode H, Chan WM, Williams AJ, Sitsapesan R (1998) Glycolytic pathway intermediates activate cardiac ryanodine receptors. FEBS Lett 431:59–62

    CAS  PubMed  Google Scholar 

  • Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878

    CAS  PubMed  Google Scholar 

  • Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284:9733–9741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kindmark H, Köhler M, Nilsson T, Arkhammar P, Wiechel K-L, Rorsman P, Efendic S (1991) Measurements of cytoplasmic free Ca2+ concentration in human pancreatic islets and insulinoma cells. FEBS Lett 291:310–314

    CAS  PubMed  Google Scholar 

  • Kindmark H, Kohler M, Arkhammar P, Efendic S, Larsson O, Linder S, Nilsson T, Berggren PO (1994) Oscillations in cytoplasmic free calcium concentration in human pancreatic islets from subjects with normal and impaired glucose tolerance. Diabetologia 37:1121–1131

    CAS  PubMed  Google Scholar 

  • Kjems LL, Ravier MA, Jonas JC, Henquin JC (2002) Do oscillations of insulin secretion occur in the absence of cytoplasmic Ca2+ oscillations in beta-cells? Diabetes 51(Suppl 1):S177–S182

    CAS  PubMed  Google Scholar 

  • Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, Meyerhof W, Harteneck C (2011) Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 162:1757–1769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnan K1, Ma Z, Björklund A, Islam MS (2014) Pancreas. Role of Transient Receptor Potential Melastatin-like Subtype 5 Channel in Insulin Secretion From Rat β-Cells. [Epub ahead of print]

    Google Scholar 

  • Kyriazis GA, Soundarapandian MM, Tyrberg B (2012) Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 109:E524–E532

    Google Scholar 

  • Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2:ra23

    PubMed Central  PubMed  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    CAS  PubMed  Google Scholar 

  • Lee HC (2012) Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 287:31633–31640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemmens R, Larsson O, Berggren PO, Islam MS (2001) Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic b-cells. J Biol Chem 276:9971–9977

    CAS  PubMed  Google Scholar 

  • Lheureux PE, Zahir S, Penaloza A, Gris M (2005) Bench-to-bedside review: antidotal treatment of sulfonylurea-induced hypoglycaemia with octreotide. Crit Care 9:543–549

    PubMed Central  PubMed  Google Scholar 

  • Li F, Zhang ZM (2009) Comparative identification of Ca(2+) channel expression in INS-1 and rat pancreatic beta cells. World J Gastroenterol 15:3046–3050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin Y, Sun Z (2012) Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 beta-cells. Endocrinology 153:3029–3039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045

    CAS  PubMed  Google Scholar 

  • Maechler P, Kennedy ED, Sebo E, Valeva A, Pozzan T, Wollheim CB (1999) Secretagogues modulate the calcium concentration in the endoplasmic reticulum of insulin-secreting cells. Studies in aequorin-expressing intact and permeabilized INS-1 cells. J Biol Chem 274:12583–12592

    CAS  PubMed  Google Scholar 

  • Majeed Y, Tumova S, Green BL, Seymour VA, Woods DM, Agarwal AK, Naylor J, Jiang S, Picton HM, Porter KE, O’Regan DJ, Muraki K, Fishwick CW, Beech DJ (2012) Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium 51:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB (2006) Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147:4655–4663

    CAS  PubMed  Google Scholar 

  • Marigo V, Courville K, Hsu WH, Feng JM, Cheng H (2009) TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells. Mol Cell Endocrinol 299:194–203

    CAS  PubMed  Google Scholar 

  • Martin F, Soria B (1996) Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 20:409–414

    CAS  PubMed  Google Scholar 

  • Masgrau R, Churchill GC, Morgan AJ, Ashcroft SJ, Galione A (2003) NAADP. A new second messenger for glucose-induced Ca(2+) responses in clonal pancreatic beta cells. Curr Biol 13:247–251

    CAS  PubMed  Google Scholar 

  • Mears D, Zimliki CL (2004) Muscarinic agonists activate Ca2+ store-operated and -independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic beta-cells. J Membr Biol 197:59–70

    CAS  PubMed  Google Scholar 

  • Michael DJ, Xiong W, Geng X, Drain P, Chow RH (2007) Human insulin vesicle dynamics during pulsatile secretion. Diabetes 56:1277–1288

    CAS  PubMed  Google Scholar 

  • Misler S, Barnett DW, Pressel DM, Gillis KD, Scharp DW, Falke LC (1992) Stimulus-secretion coupling in beta-cells of transplantable human islets of Langerhans. Evidence for a critical role for Ca2+ entry. Diabetes 41:662–670

    CAS  PubMed  Google Scholar 

  • Misler S, Dickey A, Barnett DW (2005) Maintenance of stimulus-secretion coupling and single beta-cell function in cryopreserved-thawed human islets of Langerhans. Pflugers Arch 450:395–404

    CAS  PubMed  Google Scholar 

  • Misler S, Zhou Z, Dickey AS, Silva AM, Pressel DM, Barnett DW (2009) Electrical activity and exocytotic correlates of biphasic insulin secretion from beta-cells of canine islets of Langerhans: contribution of tuning two modes of Ca2+ entry-dependent exocytosis to two modes of glucose-induced electrical activity. Channels (Austin) 3:181–193

    CAS  Google Scholar 

  • Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 278:11057–11064

    CAS  PubMed  Google Scholar 

  • Nagamatsu S, Ohara-Imaizumi M, Nakamichi Y, Kikuta T, Nishiwaki C (2006) Imaging docking and fusion of insulin granules induced by antidiabetes agents: sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes 55:2819–2825

    CAS  PubMed  Google Scholar 

  • Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442

    CAS  PubMed  Google Scholar 

  • Nelson PL, Zolochevska O, Figueiredo ML, Soliman A, Hsu WH, Feng JM, Zhang H, Cheng H (2011) Regulation of Ca(2+)-entry in pancreatic alpha-cell line by transient receptor potential melastatin 4 plays a vital role in glucagon release. Mol Cell Endocrinol 335:126–134

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    CAS  PubMed  Google Scholar 

  • Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noguchi N, Yoshikawa T, Ikeda T, Takahashi I, Shervani NJ, Uruno A, Yamauchi A, Nata K, Takasawa S, Okamoto H, Sugawara A (2008) FKBP12.6 disruption impairs glucose-induced insulin secretion. Biochem Biophys Res Commun 371:735–740

    CAS  PubMed  Google Scholar 

  • Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548

    CAS  PubMed  Google Scholar 

  • Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283:10026–10036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmer RK, Atwal K, Bakaj I, Carlucci-Derbyshire S, Buber MT, Cerne R, Cortes RY, Devantier HR, Jorgensen V, Pawlyk A, Lee SP, Sprous DG, Zhang Z, Bryant R (2010) Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay Drug Dev Technol 8:703–713

    CAS  PubMed  Google Scholar 

  • Pinton P, Tsuboi T, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2002) Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. J Biol Chem 277:37702–37710

    CAS  PubMed  Google Scholar 

  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 100:15166–15171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807

    CAS  PubMed  Google Scholar 

  • Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45

    CAS  PubMed  Google Scholar 

  • Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, Renstrom E (2013) The human L-type calcium channel Ca(v)1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 56:340–349

    CAS  PubMed  Google Scholar 

  • Roe MW, Worley JF III, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J Biol Chem 273:10402–10410

    CAS  PubMed  Google Scholar 

  • Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77

    CAS  PubMed  Google Scholar 

  • Rosker C, Meur G, Taylor EJ, Taylor CW (2009) Functional ryanodine receptors in the plasma membrane of RINm5F pancreatic {beta}-cells. J Biol Chem 284:5186–5194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic beta-cells. Diabetologia 40:528–532

    CAS  PubMed  Google Scholar 

  • Schulla V, Renstrom E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundquist I, Magnuson MA, Obermuller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F (2003) Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. EMBO J 22:3844–3854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwaller B (2012) The regulation of a cell’s Ca(2+) signaling toolkit: the Ca (2+) homeostasome. Adv Exp Med Biol 740:1–25

    CAS  PubMed  Google Scholar 

  • Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P (2009) Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 18:428–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shigeto M, Katsura M, Matsuda M, Ohkuma S, Kaku K (2007) Nateglinide and mitiglinide, but not sulfonylureas, induce insulin secretion through a mechanism mediated by calcium release from endoplasmic reticulum. J Pharmacol Exp Ther 322:1–7

    CAS  PubMed  Google Scholar 

  • Song SH, McIntyre SS, Shah H, Veldhuis JD, Hayes PC, Butler PC (2000) Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J Clin Endocrinol Metab 85:4491–4499

    CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    CAS  PubMed  Google Scholar 

  • Stozer A, Dolensek J, Rupnik MS (2013) Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices. PLoS One 8:e54638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swatton JE, Morris SA, Cardy TJ, Taylor CW (1999) Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochem J 344(Pt 1):55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szollosi A, Nenquin M, Aguilar-Bryan L, Bryan J, Henquin JC (2007) Glucose stimulates Ca2+ influx and insulin secretion in 2-week-old beta-cells lacking ATP-sensitive K+ channels. J Biol Chem 282:1747–1756

    CAS  PubMed  Google Scholar 

  • Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2:287–298

    Google Scholar 

  • Takasawa S, Kuroki M, Nata K, Noguchi N, Ikeda T, Yamauchi A, Ota H, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Takahashi I, Yoshikawa T, Shimosegawa T, Okamoto H (2010) A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene. Biochem Biophys Res Commun 397:140–145

    CAS  PubMed  Google Scholar 

  • Tarasov AI, Girard CA, Ashcroft FM (2006) ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes 55:2446–2454

    CAS  PubMed  Google Scholar 

  • Thore S, Wuttke A, Tengholm A (2007) Rapid turnover of phosphatidylinositol-4,5-bisphosphate in insulin-secreting cells mediated by Ca2+ and the ATP-to-ADP ratio. Diabetes 56:818–826

    CAS  PubMed  Google Scholar 

  • Tian G, Tepikin AV, Tengholm A, Gylfe E (2012) cAMP induces stromal interaction molecule 1 (STIM1) puncta but neither Orai1 protein clustering nor store-operated Ca2+ entry (SOCE) in islet cells. J Biol Chem 287:9862–9872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trombetta M, Bonetti S, Boselli M, Turrini F, Malerba G, Trabetti E, Pignatti P, Bonora E, Bonadonna RC (2012) CACNA1E variants affect beta cell function in patients with newly diagnosed type 2 diabetes. The Verona newly diagnosed type 2 diabetes study (VNDS) 3. PLoS One 7:e32755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60:119–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca(2+)-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    CAS  PubMed  Google Scholar 

  • Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolcott OO, Gustafsson AJ, Dzabic M, Pierro C, Tedeschi P, Sandgren J, Bari MR, Hoa NK, Bianchi M, Rakonjac M, Radmark O, Ostenson CG, Islam MS (2006) Arachidonic acid is a physiological activator of the ryanodine receptor in pancreatic beta-cells. Cell Calcium 39:529–537

    CAS  PubMed  Google Scholar 

  • Worley JF III, McIntyre MS, Spencer B, Mertz RJ, Roe MW, Dukes ID (1994) Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. J Biol Chem 269:14359–14362

    CAS  PubMed  Google Scholar 

  • Xu W, Lipscombe D (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951

    CAS  PubMed  Google Scholar 

  • Yue DT, Wier WG (1985) Estimation of intracellular [Ca2+] by nonlinear indicators. A quantitative analysis. Biophys J 48:533–537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan X, Yang L, Yi M, Jia Y (2008) RyR channels and glucose-regulated pancreatic beta-cells. Eur Biophys J 37:773–782

    CAS  PubMed  Google Scholar 

  • Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, Friedline RH, Lee E, Jun J, Ma Z, Kim F, Tsitsilianos N, Chapman K, Morrison A, Cooper MP, Miller BA, Kim JK (2012) TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 302:E807–E816

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author’s lab was supported by the funds from Karolinska Institutet and Uppsala County Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahidul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Islam, M.S. (2014). Calcium Signaling in the Islets. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_9-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_9-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics