Skip to main content
Log in

Butyrate-induced reactivation of the fetal globin genes: A molecular treatment for theβ-hemoglobinophaties

  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The inherited β-hemoglobinopathies (sickle cell disease and β thalassemia) are the result of a mutation in the adult (β) globin gene. The fetal globin chain, encoded by the γ globin genes, can substitute for the mutated or defective β globin chain, but expression of the γ globin gene is developmentally inactivated prior to birth. Reinducing expression of the normal fetal globin genes is a preferred method of ameliorating sickle cell disease and the β thalassemias. Stimulation of as little as 4–8% fetal globin synthesis in the bone marrow can produce >20% fetal hemoglobin in the peripheral circulation, due to enhanced survival of red blood cells containing both sickle and fetal hemoglobin, compared to those containing sickle hemoglobin alone. Butyric acid and butyrate derivatives are generally safe compounds which induce fetal hemoglobin production by stimulating the promoter of the fetal globin genes. An initial trial with the parent compound, delivered as Arginine Butyrate, has demonstrated rapid stimulation of fetal globin expression to levels that have been shown to ameliorate these conditions. Phase 1 trials of an oral butyrate derivative with a long plasma half-life have just begun. These agents now provide a specific new apporach for ameliorating these classic molecular disorders and merit further investigation in larger patient populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Brittenham, G., Lozoff, B., Harris, W., Shrma, V. S., Marasingham, S., and Huisman, T. J., Sickle cell anemia and trait in a population in Southern India. Am. J. Hemat.2 (1977) 25–28.

    Google Scholar 

  2. Brittenham, G. M., Schechter, A. N., and Noguchi, C. T., Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood65 (1985) 183–9.

    Google Scholar 

  3. Burns, L. J., Giauber, J., and Ginder, G. D., Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells. Blood72 (1988) 2: 1536–1542.

    Google Scholar 

  4. Daniel, P., Brazlek, M., Ceruitti, L., Pierl, F., Tardivel, I., Desmet, G., Baillet, J., and Chang, C., Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clinica chim. Acta181 (1989) 255–264.

    Google Scholar 

  5. DeSimone, J., Heller, P., Hall, L., and Zwiers, D., 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. natl Acad. Sci. USA79 (1982) 4428–31.

    Google Scholar 

  6. Dover, G. H., Humphries, R. K., Moore, J. G., Ley, N. S., Charache, S. H., and Nienhuis, A. W., Hydroxyurea induction of hemoglobin F production in sickle cell disease: relationship between cytotoxicity and F cell production. Blood67 (1986) 735–738.

    Google Scholar 

  7. Ginder, G. D., Whitters, M. J., and Pohlman, J. K., Activation of a chicker embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. natl Acad. Sci. USA81 (1984) 3954–8.

    Google Scholar 

  8. Goldberg, M. A., Husson, M. A., and Bunn, H. F., Participation of hemoglobin A and F in polymerization of sickle hemoglobin. J. biol. Chem.252 (1977) 3414–3421.

    Google Scholar 

  9. Karlsson, S., and Neinhuis, A. W., Developmental regulation of human globia genes. A. Rev. Biochem.54 (1985) 1071–1108.

    Google Scholar 

  10. Ley, T. J., DeSimone, J., Anagnou, N. P., Keller, G. H., Humphries, R. K., Turner, P. H., Young, N. S., Heller, P., and Nienhuis, A. W., 5-Azacytidine selectively increases γ-globin synthesis in a patient with β+thalassemia. New Engl. J. Med.307 (1982) 1469–75.

    Google Scholar 

  11. MacArthur, B., and Sarnik, A. P., Quantitation of short-chain fatty acids in plasma. Clin. Chem.28 (1982) 1983–1986.

    Google Scholar 

  12. McDonagh, K. T., and Nienhuis, A. W., Induction of the human globin gene promoter in K562 cells by sodium butyrate: reversal of repression by CCAAT displacement protein. Blood78 Suppl 1 (1992) 255a.

    Google Scholar 

  13. Miller, A. A., Kurschel, E., Osieka, R., and Schmidt, C., Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur. J. Can. Clin. Oncol.181 (1987) 255–264.

    Google Scholar 

  14. Noguchi, C. T., Rodgers, G. P., Serjeant, G., and Schecter, A. N., Levels of fetal hemoglobin necessary for treatment of sickle cell disease. New Engl. J. Med.318 (1988) 96–99.

    Google Scholar 

  15. Novogrodsky, A., Dvir, A., Ravid, A., Shkoinik, T., Stenzei, K. H., Rubin, A. L., and Zaizov, R., Effect of polar organic compounds on leukemic cells-butyrate-induced partial remission of acute myelogenous leukemia in a child. Cancer15 (1983) 9–14.

    Google Scholar 

  16. Partington, G. A., Yarwood, N. J., and Rutherford, T. R., Human globin gene transcription in injectedXeonopus ooctyes: Enhancement by sodium butyrate. EMBO J.3 (1984) 2787–2788.

    Google Scholar 

  17. Perrine, R. P., Brown, M. H., Clegg, J. B., Weatherall, D. J., and May, A., Benign sickle cell anemia. Lancet11 (1972) 1163–1167.

    Google Scholar 

  18. Perrine, S. P., Greene, M. F., and Faller, D. V., Delay in the fetal globin switch in infants of diabetic mothers. New Engl. J. Med.312 (1985) 224–228.

    Google Scholar 

  19. Perrine, S. P., Rudolph, A., Faller, D. V., Roman, C., Cohen, R. A., Chen, S., and Kan, Y. W. Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc. natl Acad. Sci. USA85 (1988) 8540–8542.

    Google Scholar 

  20. Perrine, S. P., Miller, B. A., Faller, D. V., Cohen, R. A., Vichinsky, E. P., Hurst, D., Lubin, B. H., and Papayannoupoulu, Th., Sodium butyrate enhances fetal globin expression in crythroid progenitors of patients with HbSS and thalassemia. Blood74 (1989) 454–459.

    Google Scholar 

  21. Perrine, S. P., Faller, D. V., Swerdlow, P., Sytkowski, A. J., Qin, G., Miller, B. A., Olivieri, N. F., Rudolph, A. M., Kan, Y. W., Stamatoyannopoulos, G., and Nienhuis, A. W. (Eds), Pharmacologic prevention and reversal of globin gene switching, in: The Regulation of Hemoglobin Switching, pp. 425–436. Johns Hopkins Univ. Press 1992.

  22. Perrine, S. P., Ginder, G., Faller, D. V., Dover, G., Ikuta, T., Witkowska, H. E., Cai, S-P, Vichinsky, E. P., and Olivieri, N. F., A short-term trial of butyrate to stimulate fetal globin gene expression in the β globin gene disorders. New Engl. J. Med. (1993) in press.

  23. Platt, O. S., Orkin, S. H., Dover, G., Beardsley, G. P., Miller, B., and Nathan, D. G., Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. clin. Invest.74 (1984) 652–6.

    Google Scholar 

  24. Platt, O. S., Thorington, B. D., Brambilla, D. J., Miller, P. F., Rosse, W. F., Vichinsky, E., and Kinney, T. R., Pain in sickle cell disease. New Engl. J. Med.325 (1991) 11–61.

    Google Scholar 

  25. Rodgers, G. P., Dover, G. J., Noguchi, C. T., Schechter, A. N., and Nienhuis, A. W., Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea. New Engl. J. Med.322 (1990) 1037–1045.

    Google Scholar 

  26. Wood, W. G., and Weatherall, D. J., Developmental genetics of the human hemoglobins. Biochem. J.215 (1983) 1–10.

    Google Scholar 

  27. Wood, W. G., Pembrey, M. E., Serjeant, G. R., Perrine, R. P., and Weatherall, D. J., Hb F synthesis in sickle cell anemia: a comparison of Saudi Arab cases with those of African origin. Br. J. Haematol.45 (1980) 431–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrine, S.P., Faller, D.V. Butyrate-induced reactivation of the fetal globin genes: A molecular treatment for theβ-hemoglobinophaties. Experientia 49, 133–137 (1993). https://doi.org/10.1007/BF01989417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01989417

Key words

Navigation