Skip to main content

Reactivation of Fetal Hemoglobin for Treating β-Thalassemia and Sickle Cell Disease

  • Chapter
  • First Online:
Gene and Cell Therapies for Beta-Globinopathies

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 1013))

Abstract

Reactivation of fetal hemoglobin (HbF) in adult hematopoietic cells has the potential for great clinical benefit in patients bearing deleterious mutations in the β-globin gene, such as β-thalassemia and sickle cell disease (SCD), since increasing the production of HbF can compensate for underproduction of β-globin chains (in β-thalassemia) and it can also disrupt sickle hemoglobin polymerization (in SCD). Thus for the past few decades, concerted efforts have been made to identify an effective way to induce the synthesis of HbF in adult erythroid cells for potential therapeutic relief from the effects of these β-globinopathies. Chemical inducers of HbF as well as a number of transcription factors that are able to reactivate HbF synthesis in vitro and in vivo in adult erythroid cells have been identified. However, there has been only limited success in attempts to manipulate either the drugs or regulatory proteins, and in only a fraction of patients, and there is wide variation in individual response to these drugs or transcription factors. These studies highlight the importance for understanding the molecular mechanisms underlying hemoglobin switching so that future studies can be designed to treat these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Higgs, D. R., Vickers, M. A., Wilkie, A. O., Pretorius, I. M., Jarman, A. P. & Weatherall, D. J. 1989. A review of the molecular genetics of the human alpha-globin gene cluster. Blood, 73, 1081–104.

    Google Scholar 

  2. Higgs, D. R. 1990. 1990 Mack Forster Prize lecture. The molecular genetics of the alpha globin gene family. Eur J Clin Invest, 20, 340–7.

    Google Scholar 

  3. Jennings, M. W., Jones, R. W., Wood, W. G. & Weatherall, D. J. 1985. Analysis of an inversion within the human beta globin gene cluster. Nucleic Acids Res, 13, 2897–906.

    Google Scholar 

  4. Moleirinho, A., Seixas, S., Lopes, A. M., Bento, C., Prata, M. J. & Amorim, A. 2013. Evolutionary constraints in the beta-globin cluster: the signature of purifying selection at the delta-globin (HBD) locus and its role in developmental gene regulation. Genome Biol Evol, 5, 559–71.

    Google Scholar 

  5. Giannopoulou, E., Bartsakoulia, M., Tafrali, C., Kourakli, A., Poulas, K., Stavrou, E. F., Papachatzopoulou, A., Georgitsi, M. & Patrinos, G. P. 2012. A single nucleotide polymorphism in the HBBP1 gene in the human beta-globin locus is associated with a mild beta-thalassemia disease phenotype. Hemoglobin, 36, 433–45.

    Google Scholar 

  6. Lyon, M. F., Barker, J. E. & Popp, R. A. 1988. Mouse globin gene nomenclature. J Hered, 79, 93–5.

    Google Scholar 

  7. Grosveld, F., Van Assendelft, G. B., Greaves, D. R. & Kollias, G. 1987. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell, 51, 975–85.

    Google Scholar 

  8. Forrester, W. C., Takegawa, S., Papayannopoulou, T., Stamatoyannopoulos, G. & Groudine, M. 1987. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res, 15, 10159–77.

    Google Scholar 

  9. Collins, F. S. & Weissman, S. M. 1984. The molecular genetics of human hemoglobin. Prog Nucleic Acid Res Mol Biol, 31, 315–462.

    Google Scholar 

  10. Levings, P. P. & Bungert, J. 2002. The human beta-globin locus control region. Eur J Biochem, 269, 1589–99.

    Google Scholar 

  11. Hsia, C. C. 1998. Respiratory function of hemoglobin. N Engl J Med, 338, 239–47.

    Google Scholar 

  12. Dominguez de Villota, E. D., Ruiz Carmona, M. T., Rubio, J. J. & De Andres, S. 1981. Equality of the in vivo and in vitro oxygen-binding capacity of haemoglobin in patients with severe respiratory disease. Br J Anaesth, 53, 1325–8.

    Google Scholar 

  13. Fuhr, J. E., Bamberger, E., Lozzio, C. B., Lozzio, B. B., Felice, A. E., Altay, G., Webber, B. B., Reese, A. L., Mayson, S. M. & Huisman, T. H. 1982. Identification and quantitation of embryonic and three types of fetal hemoglobin produced on induction of the human pluripotent leukemia cell line K-562 with hemin. Am J Hematol, 12, 1–12.

    Google Scholar 

  14. Clegg, J. B. & Gagnon, J. 1981. Structure of the zeta chain of human embryonic hemoglobin. Proc Natl Acad Sci U S A, 78, 6076–80.

    Google Scholar 

  15. Rutherford, T. R., Clegg, J. B. & Weatherall, D. J. 1980. Embryonic hemoglobin synthesis in human erythroleukemia cells. Ann N Y Acad Sci, 344, 233–9.

    Google Scholar 

  16. Hecht, F., Motulsky, A. G., Lemire, R. J. & Shepard, T. E. 1966. Predominance of hemoglobin Gower 1 in early human embryonic development. Science, 152, 91–2.

    Google Scholar 

  17. Randhawa, Z. I., Jones, R. T. & Lie-Injo, L. E. 1984. Human hemoglobin Portland Ii (zeta 2 beta 2). Isolation and characterization of Portland hemoglobin components and their constituent globin chains. J Biol Chem, 259, 7325–30.

    Google Scholar 

  18. Randhawat, Z. I., Jones, R. T. & Lie-Injo, L. E. 1984. Separation of the tryptic peptides and cyanogen bromide fragments of the human embryonic zeta chains of hemoglobin in Portland I and Ii by reverse phase high performance liquid chromatography. Hemoglobin, 8, 463–82.

    Google Scholar 

  19. Peschle, C., Migliaccio, A. R., Migliaccio, G., Russo, G., Mastroberardino, G., Ottolenghi, S., Giglioni, B., Comi, P., Gianni, A. M., Presta, M. & Et al. 1983. Cellular and molecular mechanisms of the human embryonic leads to fetal hemoglobin switch. Prog Clin Biol Res, 134, 411–9.

    Google Scholar 

  20. Mavilio, F., Giampaolo, A., Care, A., Migliaccio, G., Calandrini, M., Russo, G., Pagliardi, G. L., Mastroberardino, G., Marinucci, M. & Peschle, C. 1983. Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts. Proc Natl Acad Sci U S A, 80, 6907–11.

    Google Scholar 

  21. Peschle, C., Mavilio, F., Care, A., Migliaccio, G., Migliaccio, A. R., Salvo, G., Samoggia, P., Petti, S., Guerriero, R., Marinucci, M. & et al. 1985. Haemoglobin switching in human embryos: asynchrony of zeta → alpha and epsilon → gamma-globin switches in primitive and definite erythropoietic lineage. Nature, 313, 235–8.

    Google Scholar 

  22. Peschle, C., Migliaccio, A. R., Migliaccio, G., Petrini, M., Calandrini, M., Russo, G., Mastroberardino, G., Presta, M., Gianni, A. M., Comi, P. & et al. 1984. Embryonic----Fetal Hb switch in humans: studies on erythroid bursts generated by embryonic progenitors from yolk sac and liver. Proc Natl Acad Sci U S A, 81, 2416–20.

    Google Scholar 

  23. Charache, S., Jacobson, R., Brimhall, B., Murphy, E. A., Hathaway, P., Winslow, R., Jones, R., Rath, C. & Simkovich, J. 1978. Hb Potomac (101 Glu replaced by Asp): speculations on placental oxygen transport in carriers of high-affinity hemoglobins. Blood, 51, 331–8.

    Google Scholar 

  24. Stamatoyannopoulos G, G. F. H. S. I. S. G., Majerus Pw, Perlumtter Rm, Varmus H 2001. The Molecular Basis of Blood Diseases, Philadelphia, W.B. Saunders.

    Google Scholar 

  25. Wood, W. G., Stamatoyannopoulos, G., Lim, G. & Nute, P. E. 1975. F-cells in the adult: normal values and levels in individuals with hereditary and acquired elevations of Hb F. Blood, 46, 671–82.

    Google Scholar 

  26. Boyer, S. H., Belding, T. K., Margolet, L. & Noyes, A. N. 1975. Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults. Science, 188, 361–3.

    Google Scholar 

  27. Bard, H. 1975. The postnatal decline of hemoglobin F synthesis in normal full-term infants. J Clin Invest, 55, 395–8.

    Google Scholar 

  28. Jane, S. M. & Cunningham, J. M. 1998. Understanding fetal globin gene expression: a step towards effective HbF reactivation in haemoglobinopathies. Br J Haematol, 102, 415–22.

    Google Scholar 

  29. Wood, W. G. 1993. Increased HbF in adult life. Baillieres Clin Haematol, 6, 177–213.

    Google Scholar 

  30. Tanimoto, K., Liu, Q., Bungert, J. & Engel, J. D. 1999. Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice. Nature, 398, 344–8.

    Google Scholar 

  31. Bank, A. 2006. Regulation of human fetal hemoglobin: new players, new complexities. Blood, 107, 435–43.

    Google Scholar 

  32. Olivieri, N. F. & Weatherall, D. J. 1998. The therapeutic reactivation of fetal haemoglobin. Hum Mol Genet, 7, 1655–8.

    Google Scholar 

  33. Marcus, S. J., Kinney, T. R., Schultz, W. H., O’branski, E. E. & Ware, R. E. 1997. Quantitative analysis of erythrocytes containing fetal hemoglobin (F cells) in children with sickle cell disease. Am J Hematol, 54, 40–6.

    Google Scholar 

  34. Papadakis, M. N., Patrinos, G. P., Tsaftaridis, P. & Loutradi-Anagnostou, A. 2002. A comparative study of Greek nondeletional hereditary persistence of fetal hemoglobin and beta-thalassemia compound heterozygotes. J Mol Med, 80, 243–7.

    Google Scholar 

  35. Dedoussis, G. V., Sinopoulou, K., Gyparaki, M. & Loutradis, A. 2000. Fetal hemoglobin expression in the compound heterozygous state for -117 (G → A) Agamma HPFH and IVS-1 nt 110 (G → A) beta+ thalassemia: a case study. Eur J Haematol, 65, 93–6.

    Google Scholar 

  36. Dedoussis, G. V., Sinopoulou, K., Gyparaki, M. & Loutradis, A. 1999. Fetal hemoglobin expression in the compound heterozygous state for -117 (G → A) Agamma HPFH and IVSII-745 (C → G) beta+ thalassemia: a case study. Am J Hematol, 61, 139–43.

    Google Scholar 

  37. Noguchi, C. T., Rodgers, G. P., Serjeant, G. & Schechter, A. N. 1988. Levels of fetal hemoglobin necessary for treatment of sickle cell disease. N Engl J Med, 318, 96–9.

    Google Scholar 

  38. Olivieri, N. F. 1999. The beta-thalassemias. N Engl J Med, 341, 99–109.

    Google Scholar 

  39. Veith, R., Galanello, R., Papayannopoulou, T. & Stamatoyannopoulos, G. 1985. Stimulation of F-cell production in patients with sickle-cell anemia treated with cytarabine or hydroxyurea. N Engl J Med, 313, 1571–5.

    Google Scholar 

  40. Desimone, J., Heller, P., Hall, L. & Zwiers, D. 1982. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci U S A, 79, 4428–31.

    Google Scholar 

  41. Ley, T. J., Desimone, J., Anagnou, N. P., Keller, G. H., Humphries, R. K., Turner, P. H., Young, N. S., Keller, P. & Nienhuis, A. W. 1982. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med, 307, 1469–75.

    Google Scholar 

  42. Higgs, D. R. 1987. The Molecular-Basis of Blood-Diseases - Stamatoyannopoulos, G, Nienhuis, Aw, Leder, P, Majerus, Pw. Nature, 329, 210–210.

    Google Scholar 

  43. Steinberg, M. H. 2006. Pathophysiologically based drug treatment of sickle cell disease. Trends Pharmacol Sci, 27, 204–10.

    Google Scholar 

  44. Stuart, M. J. & Nagel, R. L. 2004. Sickle-cell disease. Lancet, 364, 1343–60.

    Google Scholar 

  45. Mabaera, R., West, R. J., Conine, S. J., Macari, E. R., Boyd, C. D., Engman, C. A. & Lowrey, C. H. 2008. A cell stress signaling model of fetal hemoglobin induction: what doesn’t kill red blood cells may make them stronger. Exp Hematol, 36, 1057–72.

    Google Scholar 

  46. Schrier, S. L. 2002. Pathophysiology of thalassemia. Curr Opin Hematol, 9, 123–6.

    Google Scholar 

  47. Giardina, P. J. & Forget, B. G. 2008. Thalassemia syndromes. In: Hoffman, R., Benz, J. E. J., Shattil, S. J., Furie, B., Silberstein, L. E., Mcglave, P. & Heslop, H. (eds.) Hematology: Basic Principles and Practice. 5th ed. Orlando: Churchill Livingstone

    Google Scholar 

  48. Testa, U. 2009. Fetal hemoglobin chemical inducers for treatment of hemoglobinopathies. Ann Hematol, 88, 505–28.

    Google Scholar 

  49. Higgs, D. R., Engel, J. D. & Stamatoyannopoulos, G. 2012. Thalassaemia. Lancet, 379, 373–83.

    Google Scholar 

  50. Gambari, R. & Fibach, E. 2007. Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem, 14, 199–212.

    Google Scholar 

  51. Nam, T. G., Lee, J., Walker, J. R., Brinker, A., Cho, C. Y. & Schultz, P. G. 2011. Identification and characterization of small-molecule inducers of fetal hemoglobin. ChemMedChem, 6, 777–80.

    Google Scholar 

  52. Gambari, R. 2010. Foetal haemoglobin inducers and thalassaemia: novel achievements. Blood Transfus, 8, 5–7.

    Google Scholar 

  53. Bianchi, N., Zuccato, C., Lampronti, I., Borgatti, M. & Gambari, R. 2009. Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of {beta}-Thalassemia and Sickle-Cell Anemia. Evid Based Complement Alternat Med, 6, 141–51.

    Google Scholar 

  54. Bohacek, R., Boosalis, M. S., Mcmartin, C., Faller, D. V. & Perrine, S. P. 2006. Identification of novel small-molecule inducers of fetal hemoglobin using pharmacophore and ‘PSEUDO’ receptor models. Chem Biol Drug Des, 67, 318–28.

    Google Scholar 

  55. Aerbajinai, W., Zhu, J., Gao, Z., Chin, K. & Rodgers, G. P. 2007. Thalidomide induces gamma-globin gene expression through increased reactive oxygen species-mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood, 110, 2864–71.

    Google Scholar 

  56. Singer, S. T., Kuypers, F. A., Olivieri, N. F., Weatherall, D. J., Mignacca, R., Coates, T. D., Davies, S., Sweeters, N., Vichinsky, E. P. & Group, E. B. T. S. 2005. Fetal haemoglobin augmentation in E/beta(0) thalassaemia: clinical and haematological outcome. Br J Haematol, 131, 378–88.

    Google Scholar 

  57. Marianna, P., Kollia, P., Akel, S., Papassotiriou, Y., Stamoulakatou, A. & Loukopoulos, D. 2001. Valproic acid, trichostatin and their combination with hemin preferentially enhance gamma-globin gene expression in human erythroid liquid cultures. Haematologica, 86, 700–5.

    Google Scholar 

  58. Strouse, J. J. & Heeney, M. M. 2012. Hydroxyurea for the treatment of sickle cell disease: efficacy, barriers, toxicity, and management in children. Pediatr Blood Cancer, 59, 365–71.

    Google Scholar 

  59. Sharef, S. W., Al-Hajri, M., Beshlawi, I., Al-Shahrabally, A., Elshinawy, M., Zachariah, M., Mevada, S. T., Bashir, W., Rawas, A., Taqi, A., Al-Lamki, Z. & Wali, Y. 2013. Optimizing Hydroxyurea use in children with sickle cell disease: low dose regimen is effective. Eur J Haematol, 90, 519–24.

    Google Scholar 

  60. Almeida, C. B., Scheiermann, C., Jang, J. E., Prophete, C., Costa, F. F., Conran, N. & Frenette, P. S. 2012. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood, 120, 2879–88.

    Google Scholar 

  61. Haywood, C., Jr., Beach, M. C., Bediako, S., Carroll, C. P., Lattimer, L., Jarrett, D. & Lanzkron, S. 2011. Examining the characteristics and beliefs of hydroxyurea users and nonusers among adults with sickle cell disease. Am J Hematol, 86, 85–7.

    Google Scholar 

  62. Brandow, A. M. & Panepinto, J. A. 2011. Monitoring toxicity, impact, and adherence of hydroxyurea in children with sickle cell disease. Am J Hematol, 86, 804–6.

    Google Scholar 

  63. Atweh, G. F. 2010. Hydroxyurea in sickle cell disease: What will it take to change practice? Am J Hematol, 85, 401–2.

    Google Scholar 

  64. Olnes, M., Chi, A., Haney, C., May, R., Minniti, C., Taylor, J. T. & Kato, G. J. 2009. Improvement in hemolysis and pulmonary arterial systolic pressure in adult patients with sickle cell disease during treatment with hydroxyurea. Am J Hematol, 84, 530–32.

    Google Scholar 

  65. Strouse, J. J., Lanzkron, S., Beach, M. C., Haywood, C., Park, H., Witkop, C., Wilson, R. F., Bass, E. B. & Segal, J. B. 2008. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics, 122, 1332–42.

    Google Scholar 

  66. Singer, S. T., Kuypers, F. A., Olivieri, N. F., Weatherall, D. J., Mignacca, R., Coates, T. D., Davies, S., Sweeters, N. & Vichinsky, E. P. 2005. Single and combination drug therapy for fetal hemoglobin augmentation in hemoglobin E-beta 0-thalassemia: Considerations for treatment. Ann N Y Acad Sci, 1054, 250–6.

    Google Scholar 

  67. Bradai, M., Abad, M. T., Pissard, S., Lamraoui, F., Skopinski, L. & De Montalembert, M. 2003. Hydroxyurea can eliminate transfusion requirements in children with severe beta-thalassemia. Blood, 102, 1529–30.

    Google Scholar 

  68. Kohli-Kumar, M., Marandi, H., Keller, M. A., Guertin, K. & Hvizdala, E. 2002. Use of hydroxyurea and recombinant erythropoietin in management of homozygous beta0 thalassemia. J Pediatr Hematol Oncol, 24, 777–8.

    Google Scholar 

  69. Watanapokasin, R., Sanmund, D., Winichagoon, P., Muta, K. & Fucharoen, S. 2006. Hydroxyurea responses and fetal hemoglobin induction in beta-thalassemia/HbE patients’ peripheral blood erythroid cell culture. Ann Hematol, 85, 164–9.

    Google Scholar 

  70. Watanapokasin, Y., Chuncharunee, S., Sanmund, D., Kongnium, W., Winichagoon, P., Rodgers, G. P. & Fucharoen, S. 2005. In vivo and in vitro studies of fetal hemoglobin induction by hydroxyurea in beta-thalassemia/hemoglobin E patients. Exp Hematol, 33, 1486–92.

    Google Scholar 

  71. Dixit, A., Chatterjee, T. C., Mishra, P., Choudhry, D. R., Mahapatra, M., Tyagi, S., Kabra, M., Saxena, R. & Choudhry, V. P. 2005. Hydroxyurea in thalassemia intermedia – a promising therapy. Ann Hematol, 84, 441–6.

    Google Scholar 

  72. Karimi, M., Darzi, H. & Yavarian, M. 2005. Hematologic and clinical responses of thalassemia intermedia patients to hydroxyurea during 6 years of therapy in Iran. J Pediatr Hematol Oncol, 27, 380–5.

    Google Scholar 

  73. Alebouyeh, M., Moussavi, F., Haddad-Deylami, H. & Vossough, P. 2004. Hydroxyurea in the treatment of major beta-thalassemia and importance of genetic screening. Ann Hematol, 83, 430–3.

    Google Scholar 

  74. Ikuta, T., Ausenda, S. & Cappellini, M. D. 2001. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cgmp-dependent protein kinase pathway. Proc Natl Acad Sci U S A, 98, 1847–52.

    Google Scholar 

  75. Nahavandi, M., Tavakkoli, F., Wyche, M. Q., Perlin, E., Winter, W. P. & Castro, O. 2002. Nitric oxide and cyclic GMP levels in sickle cell patients receiving hydroxyurea. Br J Haematol, 119, 855–7.

    Google Scholar 

  76. Conran, N., Oresco-Santos, C., Acosta, H. C., Fattori, A., Saad, S. T. & Costa, F. F. 2004. Increased soluble guanylate cyclase activity in the red blood cells of sickle cell patients. Br J Haematol, 124, 547–54.

    Google Scholar 

  77. Keefer, J. R., Schneidereith, T. A., Mays, A., Purvis, S. H., Dover, G. J. & Smith, K. D. 2006. Role of cyclic nucleotides in fetal hemoglobin induction in cultured CD34+ cells. Exp Hematol, 34, 1151–61.

    Google Scholar 

  78. Bailey, L., Kuroyanagi, Y., Franco-Penteado, C. F., Conran, N., Costa, F. F., Ausenda, S., Cappellini, M. D. & Ikuta, T. 2007. Expression of the gamma-globin gene is sustained by the cAMP-dependent pathway in beta-thalassaemia. Br J Haematol, 138, 382–95.

    Google Scholar 

  79. Cokic, V. P., Smith, R. D., Beleslin-Cokic, B. B., Njoroge, J. M., Miller, J. L., Gladwin, M. T. & Schechter, A. N. 2003. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest, 111, 231–9.

    Google Scholar 

  80. Morris, C. R., Vichinsky, E. P., Van Warmerdam, J., Machado, L., Kepka-Lenhart, D., Morris, S. M., Jr. & Kuypers, F. A. 2003. Hydroxyurea and arginine therapy: impact on nitric oxide production in sickle cell disease. J Pediatr Hematol Oncol, 25, 629–34.

    Google Scholar 

  81. Gladwin, M. T., Shelhamer, J. H., Ognibene, F. P., Pease-Fye, M. E., Nichols, J. S., Link, B., Patel, D. B., Jankowski, M. A., Pannell, L. K., Schechter, A. N. & Rodgers, G. P. 2002. Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease. Br J Haematol, 116, 436–44.

    Google Scholar 

  82. Dover, G. J., Humphries, R. K., Moore, J. G., Ley, T. J., Young, N. S., Charache, S. & Nienhuis, A. W. 1986. Hydroxyurea induction of hemoglobin F production in sickle cell disease: relationship between cytotoxicity and F cell production. Blood, 67, 735–8.

    Google Scholar 

  83. Charache, S., Dover, G. J., Moyer, M. A. & Moore, J. W. 1987. Hydroxyurea-induced augmentation of fetal hemoglobin production in patients with sickle cell anemia. Blood, 69, 109–16.

    Google Scholar 

  84. Wang, W. C., Ware, R. E., Miller, S. T., Iyer, R. V., Casella, J. F., Minniti, C. P., Rana, S., Thornburg, C. D., Rogers, Z. R., Kalpatthi, R. V., Barredo, J. C., Brown, R. C., Sarnaik, S. A., Howard, T. H., Wynn, L. W., Kutlar, A., Armstrong, F. D., Files, B. A., Goldsmith, J. C., Waclawiw, M. A., Huang, X. K., Thompson, B. W. & Investigators, B. H. 2011. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet, 377, 1663–1672.

    Google Scholar 

  85. Cao, H. 2004. Pharmacological induction of fetal hemoglobin synthesis using histone deacetylase inhibitors. Hematology, 9, 223–33.

    Google Scholar 

  86. Shahbazian, M. D. & Grunstein, M. 2007. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem, 76, 75–100.

    Google Scholar 

  87. Yan, C. & Boyd, D. D. 2006. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression. Mol Cell Biol, 26, 6357–71.

    Google Scholar 

  88. Shukla, V., Vaissiere, T. & Herceg, Z. 2008. Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res, 637, 1–15.

    Google Scholar 

  89. Wang, X. & Hayes, J. J. 2008. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol, 28, 227–36.

    Google Scholar 

  90. Yin, W., Barkess, G., Fang, X., Xiang, P., Cao, H., Stamatoyannopoulos, G. & Li, Q. 2007. Histone acetylation at the human beta-globin locus changes with developmental age. Blood, 110, 4101–7.

    Google Scholar 

  91. Pace, B. S., Qian, X. H., Sangerman, J., Ofori-Acquah, S. F., Baliga, B. S., Han, J. & Critz, S. D. 2003. p38 MAP kinase activation mediates gamma-globin gene induction in erythroid progenitors. Exp Hematol, 31, 1089–96.

    Google Scholar 

  92. Cao, H., Stamatoyannopoulos, G. & Jung, M. 2004. Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood, 103, 701–9.

    Google Scholar 

  93. Johnson, J., Hunter, R., Mcelveen, R., Qian, X. H., Baliga, B. S. & Pace, B. S. 2005. Fetal hemoglobin induction by the histone deacetylase inhibitor, scriptaid. Cell Mol Biol (Noisy-le-grand), 51, 229–38.

    Google Scholar 

  94. Witt, O., Monkemeyer, S., Ronndahl, G., Erdlenbruch, B., Reinhardt, D., Kanbach, K. & Pekrun, A. 2003. Induction of fetal hemoglobin expression by the histone deacetylase inhibitor apicidin. Blood, 101, 2001–7.

    Google Scholar 

  95. Collins, A. F., Pearson, H. A., Giardina, P., Mcdonagh, K. T., Brusilow, S. W. & Dover, G. J. 1995. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood, 85, 43–9.

    Google Scholar 

  96. Reich, S., Buhrer, C., Henze, G., Ohlendorf, D., Mesche, M., Sinha, P., Kage, A., Muller, C., Vetter, B. & Kulozik, A. E. 2000. Oral isobutyramide reduces transfusion requirements in some patients with homozygous beta-thalassemia. Blood, 96, 3357–63.

    Google Scholar 

  97. Domenica Cappellini, M., Graziadei, G., Ciceri, L., Comino, A., Bianchi, P., Porcella, A. & Fiorelli, G. 2000. Oral isobutyramide therapy in patients with thalassemia intermedia: results of a phase II open study. Blood Cells Mol Dis, 26, 105–11.

    Google Scholar 

  98. Hines, P., Dover, G. J. & Resar, L. M. 2008. Pulsed-dosing with oral sodium phenylbutyrate increases hemoglobin F in a patient with sickle cell anemia. Pediatr Blood Cancer, 50, 357–9.

    Google Scholar 

  99. Resar, L. M., Segal, J. B., Fitzpatric, L. K., Friedmann, A., Brusilow, S. W. & Dover, G. J. 2002. Induction of fetal hemoglobin synthesis in children with sickle cell anemia on low-dose oral sodium phenylbutyrate therapy. J Pediatr Hematol Oncol, 24, 737–41.

    Google Scholar 

  100. Dover, G. J., Brusilow, S. & Charache, S. 1994. Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate. Blood, 84, 339–43.

    Google Scholar 

  101. Fathallah, H., Weinberg, R. S., Galperin, Y., Sutton, M. & Atweh, G. F. 2007. Role of epigenetic modifications in normal globin gene regulation and butyrate-mediated induction of fetal hemoglobin. Blood, 110, 3391–7.

    Google Scholar 

  102. Ishiguro, K. & Sartorelli, A. C. 1998. Coinduction of embryonic and adult-type globin mRNAs by sodium butyrate and trichostatin A in two murine interleukin-3-dependent bone marrow-derived cell lines. Blood, 92, 4383–93.

    Google Scholar 

  103. Ikuta, T., Kan, Y. W., Swerdlow, P. S., Faller, D. V. & Perrine, S. P. 1998. Alterations in protein-DNA interactions in the gamma-globin gene promoter in response to butyrate therapy. Blood, 92, 2924–33.

    Google Scholar 

  104. Zitnik, G., Peterson, K., Stamatoyannopoulos, G. & Papayannopoulou, T. 1995. Effects of butyrate and glucocorticoids on gamma- to beta-globin gene switching in somatic cell hybrids. Mol Cell Biol, 15, 790–5.

    Google Scholar 

  105. Perrine, S. P., Olivieri, N. F., Faller, D. V., Vichinsky, E. P., Dover, G. J. & Ginder, G. D. 1994. Butyrate derivatives. New agents for stimulating fetal globin production in the beta-globin disorders. Am J Pediatr Hematol Oncol, 16, 67–71.

    Google Scholar 

  106. Perrine, S. P., Dover, G. H., Daftari, P., Walsh, C. T., Jin, Y., Mays, A. & Faller, D. V. 1994. Isobutyramide, an orally bioavailable butyrate analogue, stimulates fetal globin gene expression in vitro and in vivo. Br J Haematol, 88, 555–61.

    Google Scholar 

  107. Perrine, S. P., Ginder, G. D., Faller, D. V., Dover, G. H., Ikuta, T., Witkowska, H. E., Cai, S. P., Vichinsky, E. P. & Olivieri, N. F. 1993. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med, 328, 81–6.

    Google Scholar 

  108. Perrine, S. P. & Faller, D. V. 1993. Butyrate-induced reactivation of the fetal globin genes: a molecular treatment for the beta-hemoglobinopathies. Experientia, 49, 133–7.

    Google Scholar 

  109. Glauber, J. G., Wandersee, N. J., Little, J. A. & Ginder, G. D. 1991. 5′-flanking sequences mediate butyrate stimulation of embryonic globin gene expression in adult erythroid cells. Mol Cell Biol, 11, 4690–7.

    Google Scholar 

  110. Zhang, J. W., Raich, N., Enver, T., Anagnou, N. P. & Stamatoyannopoulos, G. 1990. Butyrate induces expression of transfected human fetal and endogenous mouse embryonic globin genes in GM 979 erythroleukemia cells. Dev Genet, 11, 168–74.

    Google Scholar 

  111. Perrine, S. P., Miller, B. A., Papayannopoulou, T., Faller, D. V., Rudolph, A. M., Vichinsky, E., Hurst, D. & Kan, Y. W. 1989. Butyrate analogues modulate globin gene expression in human and ovine erythroid cells. Prog Clin Biol Res, 316B, 341–50.

    Google Scholar 

  112. Perrine, S. P., Miller, B. A., Faller, D. V., Cohen, R. A., Vichinsky, E. P., Hurst, D., Lubin, B. H. & Papayannopoulou, T. 1989. Sodium butyrate enhances fetal globin gene expression in erythroid progenitors of patients with Hb SS and beta thalassemia. Blood, 74, 454–9.

    Google Scholar 

  113. Burns, L. J., Glauber, J. G. & Ginder, G. D. 1988. Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells. Blood, 72, 1536–42.

    Google Scholar 

  114. Partington, G. A., Yarwood, N. J. & Rutherford, T. R. 1984. Human globin gene transcription in injected Xenopus oocytes: enhancement by sodium butyrate. EMBO J, 3, 2787–92.

    Google Scholar 

  115. Ikuta, T., Atweh, G., Boosalis, V., White, G. L., Da Fonseca, S., Boosalis, M., Faller, D. V. & Perrine, S. P. 1998. Cellular and molecular effects of a pulse butyrate regimen and new inducers of globin gene expression and hematopoiesis. Ann N Y Acad Sci, 850, 87–99.

    Google Scholar 

  116. Pace, B. S., Chen, Y. R., Thompson, A. & Goodman, S. R. 2000. Butyrate-inducible elements in the human gamma-globin promoter. Exp Hematol, 28, 283–93.

    Google Scholar 

  117. Weinberg, R. S., Ji, X., Sutton, M., Perrine, S., Galperin, Y., Li, Q., Liebhaber, S. A., Stamatoyannopoulos, G. & Atweh, G. F. 2005. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood, 105, 1807–9.

    Google Scholar 

  118. Han, J. W., Ahn, S. H., Park, S. H., Wang, S. Y., Bae, G. U., Seo, D. W., Kwon, H. K., Hong, S., Lee, H. Y., Lee, Y. W. & Lee, H. W. 2000. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res, 60, 6068–74.

    Google Scholar 

  119. Darkin-Rattray, S. J., Gurnett, A. M., Myers, R. W., Dulski, P. M., Crumley, T. M., Allocco, J. J., Cannova, C., Meinke, P. T., Colletti, S. L., Bednarek, M. A., Singh, S. B., Goetz, M. A., Dombrowski, A. W., Polishook, J. D. & Schmatz, D. M. 1996. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A, 93, 13143–7.

    Google Scholar 

  120. Wei, G. H., Zhao, G. W., Song, W., Hao, D. L., Lv, X., Liu, D. P. & Liang, C. C. 2007. Mechanisms of human gamma-globin transcriptional induction by apicidin involves p38 signaling to chromatin. Biochem Biophys Res Commun, 363, 889–94.

    Google Scholar 

  121. Lee, E. J., Lee, B. B., Kim, S. J., Park, Y. D., Park, J. & Kim, D. H. 2008. Histone deacetylase inhibitor scriptaid induces cell cycle arrest and epigenetic change in colon cancer cells. Int J Oncol, 33, 767–76.

    Google Scholar 

  122. Keen, J. C., Yan, L., Mack, K. M., Pettit, C., Smith, D., Sharma, D. & Davidson, N. E. 2003. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat, 81, 177–86.

    Google Scholar 

  123. Giacinti, L., Giacinti, C., Gabellini, C., Rizzuto, E., Lopez, M. & Giordano, A. 2012. Scriptaid effects on breast cancer cell lines. J Cell Physiol, 227, 3426–33.

    Google Scholar 

  124. Van Thuan, N., Bui, H. T., Kim, J. H., Hikichi, T., Wakayama, S., Kishigami, S., Mizutani, E. & Wakayama, T. 2009. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction, 138, 309–17.

    Google Scholar 

  125. Xiong, X., Lan, D., Li, J., Zhong, J., Zi, X., Ma, L. & Wang, Y. 2013. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency. Cell Reprogram, 15, 293–300.

    Google Scholar 

  126. Wen, B. Q., Li, J., Li, J. J., Tian, S. J., Sun, S. C., Qi, X., Cai, W. T. & Chang, Q. L. 2013. The histone deacetylase inhibitor Scriptaid improves in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Theriogenology.

    Google Scholar 

  127. Chen, C. H., Du, F., Xu, J., Chang, W. F., Liu, C. C., Su, H. Y., Lin, T. A., Ju, J. C., Cheng, W. T., Wu, S. C., Chen, Y. E. & Sung, L. Y. 2013. Synergistic effect of trichostatin A and scriptaid on the development of cloned rabbit embryos. Theriogenology, 79, 1284–93.

    Google Scholar 

  128. Panda, S. K., George, A., Saha, A., Sharma, R., Singh, A. K., Manik, R. S., Chauhan, M. S., Palta, P. & Singla, S. K. 2012. Effect of scriptaid, a histone deacetylase inhibitor, on the developmental competence of Handmade cloned buffalo (Bubalus bubalis) embryos. Theriogenology, 77, 195–200.

    Google Scholar 

  129. Mao, J., Tessanne, K., Whitworth, K. M., Spate, L. D., Walters, E. M., Samuel, M. S., Murphy, C. N., Tracy, L., Zhao, J. & Prather, R. S. 2012. Effects of combined treatment of MG132 and scriptaid on early and term development of porcine somatic cell nuclear transfer embryos. Cell Reprogram, 14, 385–9.

    Google Scholar 

  130. Swank, R. A., Skarpidi, E., Papayannopoulou, T. & Stamatoyannopoulos, G. 2003. The histone deacetylase inhibitor, trichostatin A, reactivates the developmentally silenced gamma globin expression in somatic cell hybrids and induces gamma gene expression in adult BFUe cultures. Blood Cells Mol Dis, 30, 254–7.

    Google Scholar 

  131. Xu, M., Hou, Y., Sheng, L. & Peng, J. 2013. Therapeutic effects of thalidomide in hematologic disorders: a review. Front Med, 7, 290–300.

    Google Scholar 

  132. Parseval, L. A. M., Verhelle, D., Glezer, E., Jensen-Pergakes, K., Ferguson, G. D., Corral, L. G., Morris, C. L., Muller, G., Brady, H. & Chan, K. 2008. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34(+) cells. Journal of Clinical Investigation, 118, 248–258.

    Google Scholar 

  133. Meiler, S. E., Wade, M., Kutlar, F., Yerigenahally, S. D., Xue, Y. J., Moutouh-De Parseval, L. A., Corral, L. G., Swerdlow, P. S. & Kutlar, A. 2011. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood, 118, 1109–1112.

    Google Scholar 

  134. Dover, G. J., Charache, S. H., Boyer, S. H., Talbot, C. C., Jr. & Smith, K. D. 1983. 5-Azacytidine increases fetal hemoglobin production in a patient with sickle cell disease. Prog Clin Biol Res, 134, 475–88.

    Google Scholar 

  135. Dover, G. J., Charache, S., Nora, R. & Boyer, S. H. 1985. Progress toward increasing fetal hemoglobin production in man: experience with 5-azacytidine and hydroxyurea. Ann N Y Acad Sci, 445, 218–24.

    Google Scholar 

  136. Heller, P. & Desimone, J. 1984. 5-Azacytidine and fetal hemoglobin. Am J Hematol, 17, 439–47.

    Google Scholar 

  137. Clegg, J. B., Weatherall, D. J. & Bodmer, W. F. 1983. 5-azacytidine for beta-thalassemia? Lancet, 1, 536.

    Google Scholar 

  138. Desimone, J., Heller, P., Schimenti, J. C. & Duncan, C. H. 1983. Fetal hemoglobin production in adult baboons by 5-azacytidine or by phenylhydrazine-induced hemolysis is associated with hypomethylation of globin gene DNA. Prog Clin Biol Res, 134, 489–500.

    Google Scholar 

  139. Humphries, R. K., Dover, G., Young, N. S., Moore, J. G., Charache, S., Ley, T. & Nienhuis, A. W. 1985. 5-Azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin. J Clin Invest, 75, 547–57.

    Google Scholar 

  140. Charache, S., Dover, G., Smith, K., Talbot, C. C., Jr., Moyer, M. & Boyer, S. 1983. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci U S A, 80, 4842–6.

    Google Scholar 

  141. Dover, G. J., Charache, S. & Boyer, S. H. 1984. Increasing fetal hemoglobin in sickle cell disease: comparisons of 5-azacytidine (subcutaneous or oral) with hydroxyurea. Trans Assoc Am Physicians, 97, 140–5.

    Google Scholar 

  142. Dover, G. J. & Charache, S. H. 1984. The effects of variable doses of 5-azacytidine on fetal hemoglobin production in sickle cell anemia. Prog Clin Biol Res, 165, 73–83.

    Google Scholar 

  143. Dover, G. J., Charache, S., Boyer, S. H., Vogelsang, G. & Moyer, M. 1985. 5-Azacytidine increases HbF production and reduces anemia in sickle cell disease: dose-response analysis of subcutaneous and oral dosage regimens. Blood, 66, 527–32.

    Google Scholar 

  144. Koshy, M., Dorn, L., Bressler, L., Molokie, R., Lavelle, D., Talischy, N., Hoffman, R., Van Overveld, W. & Desimone, J. 2000. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood, 96, 2379–84.

    Google Scholar 

  145. Saunthararajah, Y. 2007. Decitabine and sickle cell disease: molecular therapy for a molecular disease. Pediatr Hematol Oncol, 24, 465–8.

    Google Scholar 

  146. Saunthararajah, Y., Molokie, R., Saraf, S., Sidhwani, S., Gowhari, M., Vara, S., Lavelle, D. & Desimone, J. 2008. Clinical effectiveness of decitabine in severe sickle cell disease. Br J Haematol, 141, 126–9.

    Google Scholar 

  147. Desimone, J., Koshy, M., Dorn, L., Lavelle, D., Bressler, L., Molokie, R. & Talischy, N. 2002. Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood, 99, 3905–8.

    Google Scholar 

  148. Saunthararajah, Y., Hillery, C. A., Lavelle, D., Molokie, R., Dorn, L., Bressler, L., Gavazova, S., Chen, Y. H., Hoffman, R. & Desimone, J. 2003. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood, 102, 3865–70.

    Google Scholar 

  149. Lavelle, D., Vaitkus, K., Hankewych, M., Singh, M. & Desimone, J. 2006. Effect of 5-aza-2′-deoxycytidine (Dacogen) on covalent histone modifications of chromatin associated with the epsilon-, gamma-, and beta-globin promoters in Papio anubis. Exp Hematol, 34, 339–47.

    Google Scholar 

  150. Lavelle, D., Chin, J., Vaitkus, K., Redkar, S., Phiasivongsa, P., Tang, C., Will, R., Hankewych, M., Roxas, B., Singh, M., Saunthararajah, Y. & Desimone, J. 2007. Oral decitabine reactivates expression of the methylated gamma-globin gene in Papio anubis. Am J Hematol, 82, 981–5.

    Google Scholar 

  151. Chin, J., Singh, M., Banzon, V., Vaitkus, K., Ibanez, V., Kouznetsova, T., Mahmud, N., Desimone, J. & Lavelle, D. 2009. Transcriptional activation of the gamma-globin gene in baboons treated with decitabine and in cultured erythroid progenitor cells involves different mechanisms. Exp Hematol, 37, 1131–42.

    Google Scholar 

  152. Akpan, I., Banzon, V., Ibanez, V., Vaitkus, K., Desimone, J. & Lavelle, D. 2010. Decitabine increases fetal hemoglobin in Papio anubis by increasing gamma-globin gene transcription. Exp Hematol, 38, 989–993 e1.

    Google Scholar 

  153. Schwartsmann, G., Schunemann, H., Gorini, C. N., Filho, A. F., Garbino, C., Sabini, G., Muse, I., Dileone, L. & Mans, D. R. 2000. A phase I trial of cisplatin plus decitabine, a new DNA-hypomethylating agent, in patients with advanced solid tumors and a follow-up early phase II evaluation in patients with inoperable non-small cell lung cancer. Invest New Drugs, 18, 83–91.

    Google Scholar 

  154. Appleton, K., Mackay, H. J., Judson, I., Plumb, J. A., Mccormick, C., Strathdee, G., Lee, C., Barrett, S., Reade, S., Jadayel, D., Tang, A., Bellenger, K., Mackay, L., Setanoians, A., Schatzlein, A., Twelves, C., Kaye, S. B. & Brown, R. 2007. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol, 25, 4603–9.

    Google Scholar 

  155. Stathis, A., Hotte, S. J., Chen, E. X., Hirte, H. W., Oza, A. M., Moretto, P., Webster, S., Laughlin, A., Stayner, L. A., Mcgill, S., Wang, L., Zhang, W. J., Espinoza-Delgado, I., Holleran, J. L., Egorin, M. J. & Siu, L. L. 2011. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res, 17, 1582–90.

    Google Scholar 

  156. Stewart, D. J., Issa, J. P., Kurzrock, R., Nunez, M. I., Jelinek, J., Hong, D., Oki, Y., Guo, Z., Gupta, S. & Wistuba, II 2009. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res, 15, 3881–8.

    Google Scholar 

  157. Cowan, L. A., Talwar, S. & Yang, A. S. 2010. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics, 2, 71–86.

    Google Scholar 

  158. George, R. E., Lahti, J. M., Adamson, P. C., Zhu, K., Finkelstein, D., Ingle, A. M., Reid, J. M., Krailo, M., Neuberg, D., Blaney, S. M. & Diller, L. 2010. Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer, 55, 629–38.

    Google Scholar 

  159. Stathis, A., Hotte, S. J., Chen, E. X., Hirte, H. W., Oza, A. M., Moretto, P., Webster, S., Laughlin, A., Stayner, L. A., Mcgill, S., Wang, L., Zhang, W. J., Espinoza-Delgado, I., Holleran, J. L., Egorin, M. J. & Siu, L. L. 2009. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res, 27.

    Google Scholar 

  160. Bortolato, M., Chen, K. & Shih, J. C. 2008. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev, 60, 1527–33.

    Google Scholar 

  161. Shi, L., Cui, S., Engel, J. D. & Tanabe, O. 2013. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med, 19, 291–4.

    Google Scholar 

  162. Cui, S., Kolodziej, K. E., Obara, N., Amaral-Psarris, A., Demmers, J., Shi, L., Engel, J. D., Grosveld, F., Strouboulis, J. & Tanabe, O. 2011. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic beta-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol, 31, 3298–311.

    Google Scholar 

  163. Fibach, E., Bianchi, N., Borgatti, M., Prus, E. & Gambari, R. 2003. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood, 102, 1276–81.

    Google Scholar 

  164. Lampronti, I., Bianchi, N., Borgatti, M., Fibach, E., Prus, E. & Gambari, R. 2003. Accumulation of gamma-globin mRNA in human erythroid cells treated with angelicin. Eur J Haematol, 71, 189–95.

    Google Scholar 

  165. Lampronti, I., Bianchi, N., Zuccato, C., Dall’acqua, F., Vedaldi, D., Viola, G., Potenza, R., Chiavilli, F., Breveglieri, G., Borgatti, M., Finotti, A., Feriotto, G., Salvatori, F. & Gambari, R. 2009. Increase in gamma-globin mRNA content in human erythroid cells treated with angelicin analogs. Int J Hematol, 90, 318–27.

    Google Scholar 

  166. Stoeckert, C. J., Jr., Nicolaides, N. C. & Haines, K. M. 1989. Cytosine arabinoside plus hemin treatment of a human erythroid cell line, KMOE, strongly induces embryonic, fetal, and adult beta-like globin genes. Hemoglobin, 13, 605–17.

    Google Scholar 

  167. Mandal, R., Kalke, R. & Li, X. F. 2004. Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group. Chem Res Toxicol, 17, 1391–7.

    Google Scholar 

  168. Mandal, R., Kalke, R. & Li, X. F. 2003. Mass spectrometric studies of cisplatin-induced changes of hemoglobin. Rapid Commun Mass Spectrom, 17, 2748–54.

    Google Scholar 

  169. Mandal, R., Teixeira, C. & Li, X. F. 2003. Studies of cisplatin and hemoglobin interactions using nanospray mass spectrometry and liquid chromatography with inductively-coupled plasma mass spectrometry. Analyst, 128, 629–34.

    Google Scholar 

  170. Winter, W. E., 3rd, Maxwell, G. L., Tian, C., Sobel, E., Rose, G. S., Thomas, G. & Carlson, J. W. 2004. Association of hemoglobin level with survival in cervical carcinoma patients treated with concurrent cisplatin and radiotherapy: a Gynecologic Oncology Group Study. Gynecol Oncol, 94, 495–501.

    Google Scholar 

  171. Beevers, C. S., Li, F., Liu, L. & Huang, S. 2006. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer, 119, 757–64.

    Google Scholar 

  172. Hay, N. & Sonenberg, N. 2004. Upstream and downstream of mTOR. Genes Dev, 18, 1926–45.

    Google Scholar 

  173. Fibach, E., Bianchi, N., Borgatti, M., Zuccato, C., Finotti, A., Lampronti, I., Prus, E., Mischiati, C. & Gambari, R. 2006. Effects of rapamycin on accumulation of alpha-, beta- and gamma-globin mRNAs in erythroid precursor cells from beta-thalassaemia patients. Eur J Haematol, 77, 437–41.

    Google Scholar 

  174. Mischiati, C., Sereni, A., Lampronti, I., Bianchi, N., Borgatti, M., Prus, E., Fibach, E. & Gambari, R. 2004. Rapamycin-mediated induction of gamma-globin mRNA accumulation in human erythroid cells. Br J Haematol, 126, 612–21.

    Google Scholar 

  175. Kiefer, C. M., Hou, C., Little, J. A. & Dean, A. 2008. Epigenetics of beta-globin gene regulation. Mutat Res, 647, 68–76.

    Google Scholar 

  176. Van Dijk, T. B., Gillemans, N., Pourfarzad, F., Van Lom, K., Von Lindern, M., Grosveld, F. & Philipsen, S. 2010. Fetal globin expression is regulated by Friend of Prmt1. Blood, 116, 4349–52.

    Google Scholar 

  177. Sankaran, V. G., Menne, T. F., Scepanovic, D., Vergilio, J. A., Ji, P., Kim, J., Thiru, P., Orkin, S. H., Lander, E. S. & Lodish, H. F. 2011. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A, 108, 1519–24.

    Google Scholar 

  178. Aerbajinai, W., Zhu, J., Kumkhaek, C., Chin, K. & Rodgers, G. P. 2009. SCF induces gamma-globin gene expression by regulating downstream transcription factor COUP-TFII. Blood, 114, 187–94.

    Google Scholar 

  179. Pevny, L., Simon, M. C., Robertson, E., Klein, W. H., Tsai, S. F., D’agati, V., Orkin, S. H. & Costantini, F. 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature, 349, 257–60.

    Google Scholar 

  180. Pevny, L., Lin, C. S., D’agati, V., Simon, M. C., Orkin, S. H. & Costantini, F. 1995. Development of hematopoietic cells lacking transcription factor GATA-1. Development, 121, 163–72.

    Google Scholar 

  181. Weiss, M. J., Keller, G. & Orkin, S. H. 1994. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev, 8, 1184–97.

    Google Scholar 

  182. Weiss, M. J. & Orkin, S. H. 1995. GATA transcription factors: key regulators of hematopoiesis. Exp Hematol, 23, 99–107.

    Google Scholar 

  183. Crossley, M., Tsang, A. P., Bieker, J. J. & Orkin, S. H. 1994. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. J Biol Chem, 269, 15440–4.

    Google Scholar 

  184. Blobel, G. A., Simon, M. C. & Orkin, S. H. 1995. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol, 15, 626–33.

    Google Scholar 

  185. Vakoc, C. R., Letting, D. L., Gheldof, N., Sawado, T., Bender, M. A., Groudine, M., Weiss, M. J., Dekker, J. & Blobel, G. A. 2005. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell, 17, 453–62.

    Google Scholar 

  186. Costa, F. C., Fedosyuk, H., Chazelle, A. M., Neades, R. Y. & Peterson, K. R. 2012. Mi2beta is required for gamma-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in beta-YAC transgenic mice. PLoS Genet, 8, e1003155.

    Google Scholar 

  187. Miccio, A. & Blobel, G. A. 2010. Role of the GATA-1/FOG-1/NuRD pathway in the expression of human beta-like globin genes. Mol Cell Biol, 30, 3460–70.

    Google Scholar 

  188. Harju-Baker, S., Costa, F. C., Fedosyuk, H., Neades, R. & Peterson, K. R. 2008. Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site. Mol Cell Biol, 28, 3101–13.

    Google Scholar 

  189. Drissen, R., Palstra, R. J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S. & De Laat, W. 2004. The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev, 18, 2485–90.

    Google Scholar 

  190. Armstrong, J. A., Bieker, J. J. & Emerson, B. M. 1998. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell, 95, 93–104.

    Google Scholar 

  191. Zhang, W. & Bieker, J. J. 1998. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A, 95, 9855–60.

    Google Scholar 

  192. Zhang, W., Kadam, S., Emerson, B. M. & Bieker, J. J. 2001. Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol Cell Biol, 21, 2413–22.

    Google Scholar 

  193. Chen, X. & Bieker, J. J. 2001. Unanticipated repression function linked to erythroid Kruppel-like factor. Mol Cell Biol, 21, 3118–25.

    Google Scholar 

  194. Chen, X. & Bieker, J. J. 2004. Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol, 24, 10416–24.

    Google Scholar 

  195. Shivdasani, R. A. & Orkin, S. H. 1995. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A, 92, 8690–4.

    Google Scholar 

  196. Andrews, N. C., Erdjument-Bromage, H., Davidson, M. B., Tempst, P. & Orkin, S. H. 1993. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature, 362, 722–8.

    Google Scholar 

  197. Martin, F., Van Deursen, J. M., Shivdasani, R. A., Jackson, C. W., Troutman, A. G. & Ney, P. A. 1998. Erythroid maturation and globin gene expression in mice with combined deficiency of NF-E2 and Nrf-2. Blood, 91, 3459–3466.

    Google Scholar 

  198. Sawado, T., Igarashi, K. & Groudine, M. 2001. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proceedings of the National Academy of Sciences of the United States of America, 98, 10226–10231.

    Google Scholar 

  199. Moi, P., Chan, K., Asunis, I., Cao, A. & Kan, Y. W. 1994. Isolation of Nf-E2-Related Factor-2 (Nrf2), a Nf-E2-Like Basic Leucine-Zipper Transcriptional Activator That Binds to the Tandem Nf-E2/Ap1 Repeat of the Beta-Globin Locus-Control Region. Proceedings of the National Academy of Sciences of the United States of America, 91, 9926–9930.

    Google Scholar 

  200. Macari, E. R. & Lowrey, C. H. 2011. Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood, 117, 5987–97.

    Google Scholar 

  201. Choi, O. R. & Engel, J. D. 1988. Developmental regulation of beta-globin gene switching. Cell, 55, 17–26.

    Google Scholar 

  202. Gallarda, J. L., Foley, K. P., Yang, Z. Y. & Engel, J. D. 1989. The beta-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. Genes Dev, 3, 1845–59.

    Google Scholar 

  203. Yang, Z. & Engel, J. D. 1994. Biochemical characterization of the developmental stage- and tissue-specific erythroid transcription factor, NF-E4. J Biol Chem, 269, 10079–87.

    Google Scholar 

  204. Zhou, W., Zhao, Q., Sutton, R., Cumming, H., Wang, X., Cerruti, L., Hall, M., Wu, R., Cunningham, J. M. & Jane, S. M. 2004. The role of p22 NF-E4 in human globin gene switching. J Biol Chem, 279, 26227–32.

    Google Scholar 

  205. Zhou, W., Clouston, D. R., Wang, X., Cerruti, L., Cunningham, J. M. & Jane, S. M. 2000. Induction of human fetal globin gene expression by a novel erythroid factor, NF-E4. Mol Cell Biol, 20, 7662–72.

    Google Scholar 

  206. Zhao, Q., Cumming, H., Cerruti, L., Cunningham, J. M. & Jane, S. M. 2004. Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. J Biol Chem, 279, 41477–86.

    Google Scholar 

  207. Keys, J. R., Tallack, M. R., Zhan, Y., Papathanasiou, P., Goodnow, C. C., Gaensler, K. M., Crossley, M., Dekker, J. & Perkins, A. C. 2008. A mechanism for Ikaros regulation of human globin gene switching. Br J Haematol, 141, 398–406.

    Google Scholar 

  208. Lopez, R. A., Schoetz, S., Deangelis, K., O’neill, D. & Bank, A. 2002. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci U S A, 99, 602–7.

    Google Scholar 

  209. Bottardi, S., Ross, J., Bourgoin, V., Fotouhi-Ardakani, N., Affar El, B., Trudel, M. & Milot, E. 2009. Ikaros and GATA-1 combinatorial effect is required for silencing of human gamma-globin genes. Mol Cell Biol, 29, 1526–37.

    Google Scholar 

  210. Cohen-Barak, O., Hagiwara, N., Arlt, M. F., Horton, J. P. & Brilliant, M. H. 2001. Cloning, characterization and chromosome mapping of the human SOX6 gene. Gene, 265, 157–64.

    Google Scholar 

  211. Cohen-Barak, O., Erickson, D. T., Badowski, M. S., Fuchs, D. A., Klassen, C. L., Harris, D. T. & Brilliant, M. H. 2007. Stem cell transplantation demonstrates that Sox6 represses epsilon y globin expression in definitive erythropoiesis of adult mice. Exp Hematol, 35, 358–67.

    Google Scholar 

  212. Yi, Z., Cohen-Barak, O., Hagiwara, N., Kingsley, P. D., Fuchs, D. A., Erickson, D. T., Epner, E. M., Palis, J. & Brilliant, M. H. 2006. Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet, 2, e14.

    Google Scholar 

  213. Jawaid, K., Wahlberg, K., Thein, S. L. & Best, S. 2010. Binding patterns of BCL11A in the globin and GATA1 loci and characterization of the BCL11A fetal hemoglobin locus. Blood Cells Mol Dis, 45, 140–6.

    Google Scholar 

  214. Xu, J., Sankaran, V. G., Ni, M., Menne, T. F., Puram, R. V., Kim, W. & Orkin, S. H. 2010. Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev, 24, 783–98.

    Google Scholar 

  215. Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V. G., Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G., Piras, M. G., Sestu, N., Lai, S., Dei, M., Mulas, A., Crisponi, L., Naitza, S., Asunis, I., Deiana, M., Nagaraja, R., Perseu, L., Satta, S., Cipollina, M. D., Sollaino, C., Moi, P., Hirschhorn, J. N., Orkin, S. H., Abecasis, G. R., Schlessinger, D. & Cao, A. 2008. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A, 105, 1620–5.

    Google Scholar 

  216. Lettre, G., Sankaran, V. G., Bezerra, M. A., Araujo, A. S., Uda, M., Sanna, S., Cao, A., Schlessinger, D., Costa, F. F., Hirschhorn, J. N. & Orkin, S. H. 2008. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A, 105, 11869–74.

    Google Scholar 

  217. Menzel, S., Garner, C., Gut, I., Matsuda, F., Yamaguchi, M., Heath, S., Foglio, M., Zelenika, D., Boland, A., Rooks, H., Best, S., Spector, T. D., Farrall, M., Lathrop, M. & Thein, S. L. 2007. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet, 39, 1197–9.

    Google Scholar 

  218. Sankaran, V. G., Menne, T. F., Xu, J., Akie, T. E., Lettre, G., Van Handel, B., Mikkola, H. K., Hirschhorn, J. N., Cantor, A. B. & Orkin, S. H. 2008. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science, 322, 1839–42.

    Google Scholar 

  219. Sankaran, V. G., Xu, J. & Orkin, S. H. 2010. Transcriptional silencing of fetal hemoglobin by BCL11A. Ann N Y Acad Sci, 1202, 64–8.

    Google Scholar 

  220. Sankaran, V. G., Xu, J., Ragoczy, T., Ippolito, G. C., Walkley, C. R., Maika, S. D., Fujiwara, Y., Ito, M., Groudine, M., Bender, M. A., Tucker, P. W. & Orkin, S. H. 2009. Developmental and species-divergent globin switching are driven by BCL11A. Nature, 460, 1093–7.

    Google Scholar 

  221. Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J., Van Der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., Van Ijcken, W., Ozgur, Z., Gillemans, N., Hou, J., Bugeja, M., Grosveld, F. G., Von Lindern, M., Felice, A. E., Patrinos, G. P. & Philipsen, S. 2010. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet, 42, 801–5.

    Google Scholar 

  222. Zhou, D., Liu, K., Sun, C. W., Pawlik, K. M. & Townes, T. M. 2010. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet, 42, 742–4.

    Google Scholar 

  223. Esteghamat, F., Gillemans, N., Bilic, I., Van Den Akker, E., Cantu, I., Van Gent, T., Klingmuller, U., Van Lom, K., Von Lindern, M., Grosveld, F., Bryn Van Dijk, T., Busslinger, M. & Philipsen, S. 2013. Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood, 121, 2553–62.

    Google Scholar 

  224. Bauer, D. E., Kamran, S. C., Lessard, S., Xu, J., Fujiwara, Y., Lin, C., Shao, Z., Canver, M. C., Smith, E. C., Pinello, L., Sabo, P. J., Vierstra, J., Voit, R. A., Yuan, G. C., Porteus, M. H., Stamatoyannopoulos, J. A., Lettre, G. & Orkin, S. H. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science, 342, 253–7.

    Google Scholar 

  225. Xu, J., Bauer, D. E., Kerenyi, M. A., Vo, T. D., Hou, S., Hsu, Y. J., Yao, H., Trowbridge, J. J., Mandel, G. & Orkin, S. H. 2013. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci U S A, 110, 6518–23.

    Google Scholar 

  226. Omori, A., Tanabe, O., Engel, J. D., Fukamizu, A. & Tanimoto, K. 2005. Adult stage gamma-globin silencing is mediated by a promoter direct repeat element. Mol Cell Biol, 25, 3443–51.

    Google Scholar 

  227. Tanimoto, K., Liu, Q., Grosveld, F., Bungert, J. & Engel, J. D. 2000. Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev, 14, 2778–94.

    Google Scholar 

  228. Tanabe, O., Mcphee, D., Kobayashi, S., Shen, Y., Brandt, W., Jiang, X., Campbell, A. D., Chen, Y. T., Chang, C., Yamamoto, M., Tanimoto, K. & Engel, J. D. 2007. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J, 26, 2295–306.

    Google Scholar 

  229. Campbell, A. D., Cui, S., Shi, L., Urbonya, R., Mathias, A., Bradley, K., Bonsu, K. O., Douglas, R. R., Halford, B., Schmidt, L., Harro, D., Giacherio, D., Tanimoto, K., Tanabe, O. & Engel, J. D. 2011. Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes. Proc Natl Acad Sci U S A, 108, 18808–13.

    Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues Andrew D. Campbell and Jordan Shavit (Department of Pediatrics, University of Michigan Medical School) for valuable comments and constructive edits. We also gratefully acknowledge support from NIH grants HL114368 and HL117657 (J.D.E) and the American Heart Association for a Scientist Development Grant (13SDG16950062; S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Douglas Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, S., Engel, J.D. (2017). Reactivation of Fetal Hemoglobin for Treating β-Thalassemia and Sickle Cell Disease. In: Malik, P., Tisdale, J. (eds) Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology(), vol 1013. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7299-9_7

Download citation

Publish with us

Policies and ethics