Skip to main content
Log in

Extending the applicability of TG measurements to industry and to quality ensuring by dimensionless analysis

  • Kinetics
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

TheI i=E i/RT i dimensionless evaluation is very suitable for describing the TG measurements according to theE i/RT i=lnA +n[ln(1−α)i]−ln(dα/dr)i equation. TheI i andE i functions make the comparison of the different TG measurements possible quantitatively in the case of more DTG peaks as well.

TheI i andE i values as function of (1-α)i and 1/T i open new way for further theoretical and practical studies by TG measurements. Such types of results are the quantitative determination of the effect of the measuring conditions, the measuring of the mechanochemical effect of grinding and among others the explanation of the self-hardening process of fly ashes of power stations.

Strict connections exist between theI i functions and the constants of the compensation effect (CE). These constants (tanα, axis intersect) can be calculated directly from the average of the measured data of theI i function making the introduction and theoretical and practical application of the idea of ‘general activation energy’ (¯E) possible. The quantitative characterisation of the examined materials of the fine structure ofCE and of the thermal processes together proves the extending importance of TG measurements from industrial and material qualification aspects as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Flynn and B. Dicens, Thermochim. Acta, 15 (1976) 1.

    Article  Google Scholar 

  2. F. Paulik and J. Paulik, J. Thermal Anal., 5 (1973) 253.

    Article  Google Scholar 

  3. F. Rouquerol, Y. Laureiro and J. Rouquerol, Kinetic Investigation, by CRTA, of the Thermal Dehydration of Lithium Sulphate Monohydrate, Poster, Hatfield, 24–28 August, 1992.

  4. H. K. Yuen, W. A. Grote and R. C. Young, Thermochim. Acta, 42 (1980) 305.

    Article  Google Scholar 

  5. E. S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.

    Article  Google Scholar 

  6. A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.

    Google Scholar 

  7. J. Sesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

  8. V. Satava, Thermochim. Acta, 2 (1971) 423.

    Article  Google Scholar 

  9. P. K. Gallagher and D. W. Johnson, Jr., Thermochim. Acta, 6 (1973) 67.

    Article  Google Scholar 

  10. H. Fong and D. T. Y. Chen, Thermochim. Acta, 18 (1977) 273.

    Article  Google Scholar 

  11. K. Heide, W. Höland, H. Gölker, K. Seyfarth, B. Müller and R. Sauer, Thermochim. Acta, 13 (1975) 365.

    Article  Google Scholar 

  12. Z. Jian-Hua, L. Hong-Gou, J. Ben-Gao and Y. Zhao-He, J. Thermal Anal., 39 (1993) 1431.

    Google Scholar 

  13. C. J. Keattch and D. Dollimore, An introduction to thermogravimetry, Heyden and Son, London 1975.

    Google Scholar 

  14. J. Opferman and E. Kaisersberger, Thermal Analysis, Application Service — Software 25 January, 1993 NETZSCH.

  15. T. Ozawa, J. Thermal Anal., 5 (1973) 563.

    Article  Google Scholar 

  16. H. Kambe and P. D. Garn, Thermal Analysis: Comparative Studies on Materials, Eds: H. Kambe and P. D. Garn, Proc. USA-Japones Joint, Seminar, Acron, Ohio, USA, 1974. P. D. Garn, Studying the Experiment, pp. 90–111.

  17. V. Swaminathan, N. S. Madhavan and D. Radhamony, Thermochim. Acta, 39 (1980) 329.

    Article  Google Scholar 

  18. T. J. W. De Bruijn, A. N. Ipekoglu, W. A. De Jong and P. J. Van Den Berg, Thermochim. Acta, 45 (1981) 305.

    Article  Google Scholar 

  19. J. Blazejowski, J. Szychlinski and K. Widorpska, Thermochim. Acta, 46 (1981) 147.

    Article  Google Scholar 

  20. E. Cremer, Adv. Catal., 7 (1955) 75.

    Google Scholar 

  21. Z. Adonyi, J. Thermal Anal., 42 (1994) 491.

    Google Scholar 

  22. Z. Adonyi and G. KŐrösi, Thermochim. Acta, 60 (1983) 23.

    Article  Google Scholar 

  23. Z. Adonyi, építŐanyag, 47, No. 2 (1995) 52. (in Hungarian)

    Google Scholar 

  24. Z. Adonyi and K. Mészáros Szécsényi, J. Thermal Anal., 46 (1996) 139.

    Article  Google Scholar 

  25. J. H. Flynn, J. Thermal Anal., 36 (1990) 1579.

    Article  Google Scholar 

  26. A. S. Foust, L. A. Wenzel, C. W. Clump, L. Maus and L. B. Andersen, Principles of Unit Operations, Wiley, New York 1960.

    Google Scholar 

  27. M. Parti and I. Dugmanics, Transactions of the Am. Soc. Agricultural Eng., 33 (1990) 1653.

    Google Scholar 

  28. K. Böhme, VEB Mansfeld-Kombinat GDR, private communication, 1977. (ref. in [22]).

    Google Scholar 

  29. J. E. House, Jr. and D. D. Dunlap, Thermochim. Acta, 42 (1980) 377.

    Article  Google Scholar 

  30. D. T. Y. Chen and P. H. Fong, Thermochim. Acta, 18 (1977) 161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author thanks gratefully to Professor Márta Fehér mathematicien, Head of the Department of Philosophy at the Technical University of Budapest for the consultations and for the encouragements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adonyi, Z. Extending the applicability of TG measurements to industry and to quality ensuring by dimensionless analysis. Journal of Thermal Analysis 47, 577–588 (1996). https://doi.org/10.1007/BF01983999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01983999

Keywords

Navigation