Skip to main content
Log in

Thermal decomposition of Cu-based hydroxycarbonate catalytic precursors for the low-temperature co-shift reaction

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The thermal decomposition of Cu-Zn-Al hydroxycarbonate precursors to obtain water-gas shift catalysts was studied by employing a variety of experimental techniques. A set of six samples containing 34 wt% of Cu and different Al/Zn ratios were prepared by coprecipitation. Depending on the cation ratio, the ternary precursors contained hydrotalcite, aurichalcite and/or rosasite phases. Malachite and hydrozincite were determined in binary Cu/Al and Cu/Zn samples, respectively. The precipitates decomposed in three endothermic transformations in the temperature ranges 363–453 K, 453–673 K and 673–923 K. In the first step (ΔW=0–9%), the hydrotalcite-containing samples lost the crystallization water of the hydrotalcite phase. In the middle-temperature transition (ΔW=18–30%), the samples were completely dehydroxylated and simultaneously eliminated a proportion of the carbonate ions through a two-step dehydroxylation/decarbonation process. The high-temperature transformation (ΔW=3–7%) corresponded to the final decarbonation of the samples. Mixed oxides with a high dispersion of copper were obtained from hydrotalcite-containing precursors: the higher the amount of hydrotalcite in the precursor, the lower the CuO crystallite size in the resulting mixed oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Grenoble, M. M. Estadt and D. F. Ollis, J. Catal., 67 (1981) 90.

    Article  CAS  Google Scholar 

  2. J. Nakamura, J. M. Campbell and C. T. Campbell, J. Chem. Soc. Faraday Trans., 86 (1990) 2725.

    Article  Google Scholar 

  3. L. Lloyd, D. E. Ridler and M. V. Twigg, in M. V. Twigg (Ed.), Catalyst Handbook, 2nd Edition, Wolfe, London 1989, p. 283.

    Google Scholar 

  4. A. J. Marchi, J. I. Di Cosimo and C. R. Apesteguia, Proc. 4th Int. Symp. on Scientific Bases for the Preparation of Catalysts, Louvain-la-Neuve, Belgium, Pap. H-7, 1986.

  5. J. I. Di Cosimo, A. J. Marchi and C. R. Apesteguia, J. Catal., 134 (1992) 594.

    Article  Google Scholar 

  6. R. A. Hadden, P. J. Lambert and C. Ranson, Appl. Catal. A, 122 (1995) L1.

    Article  CAS  Google Scholar 

  7. J. E. Baker, R. Burch and N. Yuquin, Appl. Catal., 73 (1991) 135.

    Article  CAS  Google Scholar 

  8. M. J. L. Ginés and C. R. Apesteguía, Appl. Catal., A, 131 (1995) 283.

    Article  Google Scholar 

  9. P. Gherardi, O. Ruggeri, F. Trifiro, A. Vaccari, G. Del Piero, G. Manara and B. Notari, in G. Poncelet, P. Grange and P. A. Jacobs (Eds.), Preparation of Catalysts III, Elsevier, Amsterdam 1983, p. 723.

    Chapter  Google Scholar 

  10. H. F. W. Taylor, Min. Mag., 39 (1973) 304.

    Article  Google Scholar 

  11. S. Miyata, Clays and Clay Minerals, 23 (1975) 369.

    Article  CAS  Google Scholar 

  12. W. T. Reichle, S. L. Kang and D. S. Everhardt, J. Catal., 101 (1986) 253.

    Article  Google Scholar 

  13. A. J. Marchi, J. I. Di Cosimo and C. R. Apesteguía, in J. M. Phillips and M. Ternan (Eds.), Proc. 9th Int. Congress on Catalysis, Chemical Institute of Canada, Ottawa 1988, Vol. 2, p. 529.

    Google Scholar 

  14. F. Rey, V. Fornés and J. M. Rojo, J. Chem. Soc. Faraday Trans., 88 (1992) 2233.

    Article  CAS  Google Scholar 

  15. T. Sato, K. Kato, T. Endo and M. Shimada, React. Solids, 2 (1986) 253.

    Article  CAS  Google Scholar 

  16. E. B. M. Doesburg, R. H. Hoppener, B. de Koning, X. Xiaoding and J. J. F. Scholten, in Preparation of Catalysts IV, B. Delmon, P. Grange, P. A. Jacobs and G. Poncelet Eds., Elsevier, Amsterdam 1987, p. 767.

    Chapter  Google Scholar 

  17. D. S. Shishkov, N. A. Kassabova and K. N. Petkov, in Preparation of Catalysts III, G. Poncelet, P. Grange and P. A. Jacobs, Eds., Elsevier, Amsterdam 1983, p. 757.

    Chapter  Google Scholar 

  18. J. Hernandez-Moreno, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Phys. Chem. Mineral, 12 (1985) 34.

    CAS  Google Scholar 

  19. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today, 11 (1991) 173.

    Article  CAS  Google Scholar 

  20. T. Yamaoka, M. Abe and M. Tsuji, Mat. Res. Bull., 24 (1989) 1183.

    Article  CAS  Google Scholar 

  21. N. McDevitt and W. Baum, Spectrochim. Acta, 20 (1963) 799.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Support of this work by the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET, Argentina) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginés, M.J.L., Apesteguía, C.R. Thermal decomposition of Cu-based hydroxycarbonate catalytic precursors for the low-temperature co-shift reaction. Journal of Thermal Analysis 50, 745–756 (1997). https://doi.org/10.1007/BF01979204

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979204

Keywords

Navigation