Skip to main content
Log in

A Modified Co-precipitation Method to Prepare Cu/ZnO/Al2O3 Catalyst and Its Application in Low Temperature Water-gas Shift (LT-WGS) Reaction

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A modified co-precipitation method for the production of Cu/ZnO/Al2O3 complex was studied. The modification was that part of Al was introduced by adding Al3+ into Cu2+/Zn2+ solution, and the rest of Al was added after co-precipitation step in the form of pseudo-boehmite. The prepared samples were characterized by different techniques such as X-ray diffraction, N2 adsorption, H2-N2O titration, temperature programmed reduction and scanning electron microscopy. X-ray diffraction characterizations revealed that Al3+ can be doped in aurichalcite lattice, and the maximum doping amount of Al3+ was 5.0% of total Cu and Zn atoms. The Cu/ZnO/Al2O3 sample produced by the modified method, in which co-precipitated Al3+ was 2.5% of total Cu and Zn atoms showed much better activity and stability in water-gas shift reaction than commercial sample. The high Cu surface area (26.1 m2/g) obtained by decompositon of doped aurichalcite is believed to be responsible for the activity enhancement. The stability was enhanced mainly because of the support effect of γ-Al2O3, which was decomposed from pseudo-boehmite in the calcination step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bahmani M, Vasheghani Farahani B, Sahebdelfar S. Preparation of High Performance Nano-Sized Cu/ZnO/Al2O3 Methanol Synthesis Catalyst via Aluminum Hydrous Oxide Sol[J]. Appl. Catal., A, 2016, 520 (Supplement C): 178–187

    Article  Google Scholar 

  2. Bagherzadeh SB, Haghighi M. Plasma-Enhanced Comparative Hydrothermal and Coprecipitation Preparation of CuO/ZnO/Al2O3 Nanocatalyst Used in Hydrogen Production via Methanol Steam Reforming[J]. Energy Convers. Manage., 2017, 142 (Supplement C): 452–465

    Article  Google Scholar 

  3. Wang C, Liu C, Fu W, et al. The Water-Gas Shift Reaction for Hydrogen Production from Coke Oven Gas over Cu/ZnO/Al2O3 Catalyst[J]. Catal. Today, 2016, 263: 46–51

    Article  Google Scholar 

  4. Kowalik P, Próchniak W, Borowiecki T. The Effect of Alkali Metals Doping on Properties of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift[J]. Catal. Today, 2011, 176 (1): 144–148

    Article  Google Scholar 

  5. Tanaka Y, Takeguchi T, Kikuchi R, et al. Influence of Preparation Method and Additive for Cu-Mn Spinel Oxide Catalyst on Water Gas Shift Reaction of Reformed Fuels[J]. Appl. Catal., A, 2005, 279 (1–2): 59–66

    Article  Google Scholar 

  6. Zhang Y, Liu J, Li Y, et al. Enhancement of Active Anticorrosion via Ce-doped Zn-Al Layered Double Hydroxides Embedded in Sol-Gel Coatings on Aluminum Alloy[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32 (5): 1199–1204

    Article  Google Scholar 

  7. Yan W, Xiao H, Jiang T, et al. Fabrication and Thermal Insulating Properties of ITO/PVB Nanocomposites for Energy Saving Glass[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32 (1): 63–66

    Article  Google Scholar 

  8. Xie D, Wan L, Song D, et al. Low-temperature Sintering of FeCuCo based Pre-alloyed Powder for Diamond Bits[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31 (4): 805–810

    Article  Google Scholar 

  9. Zhou Z, Mei B, Song J, et al. Preparation of Nanometer Nd3+,Y3+ Co-doped CaF2 Powder by Coprecipitation-azeotropic Distillation Technique[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31 (4): 827–829

    Article  Google Scholar 

  10. Zhang D, Zhao G, Yu J, et al. Thermodynamic and Kinetic Studies of Effective Adsorption of 2,4,6-trichlorophenol onto Calcine Mg/Al-CO3 Layered Double Hydroxide[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31 (6): 1211–1218

    Article  Google Scholar 

  11. Xiu S, Wei T, Ye Y, et al. Preparation of AZO Nanoparticles, Ceramic Targets and Thin Films by a Co-precipitaition Method[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2015, 30 (6): 1134–1139

    Article  Google Scholar 

  12. Budiman A, Ridwan M, Kim SM, et al. Design and Preparation of High-Surface-Area Cu/ZnO/Al2O3 Catalysts Using a Modified Co-precipitation Method for the Water-Gas Shift Reaction[J]. Appl. Catal., A, 2013, 462–463 (0): 220–226

    Article  Google Scholar 

  13. Nishida K, Li D, Zhan Y, et al. Effective MgO Surface Doping of Cu/Zn/Al Oxides as Water–Gas Shift Catalysts[J]. Appl. Clay Sci., 2009, 44 (3-4): 211–217

    Article  Google Scholar 

  14. Kowalik P, Konkol M, Antoniak K, et al. The Effect of the Precursor Ageing on Properties of the Cu/ZnO/Al2O3 Catalyst for Low Temperature Water-Gas Shift (LT-WGS)[J]. J. Mol. Catal. A: Chem., 2014, 392 (0): 127–133

    Article  Google Scholar 

  15. Lima AAG, Nele M, Moreno EL, et al. Composition Effects on the Activity of Cu-ZnO-Al2O3 Based Catalysts for the Water Gas Shift Reaction: A Statistical Approach[J]. Appl. Catal., A, 1998, 171 (1): 31–43

    Article  Google Scholar 

  16. Tarasov A, Schumann J, Girgsdies F, et al. Thermokinetic Investigation of Binary Cu/Zn Hydroxycarbonates as Precursors for Cu/ZnO Catalysts[J]. Thermochim. Acta, 2014, 591 (0): 1–9

    Article  Google Scholar 

  17. Fu W, Bao Z, Ding W, et al. The Synergistic Effect of the Structural Precursors of Cu/ZnO/Al2O3 Catalysts for Water-Gas Shift Reaction[J]. Catal. Commun., 2011, 12 (6): 505–509

    Article  Google Scholar 

  18. Behrens M, Brennecke D, Girgsdies F, et al. Understanding the Complexity of a Catalyst Synthesis: Co-precipitation of Mixed Cu,Zn,Al Hydroxycarbonate Precursors for Cu/ZnO/Al2O3 Catalysts Investigated by Titration Experiments[J]. Appl. Catal., A, 2011, 392 (1): 93–102

    Article  Google Scholar 

  19. Li J, Inui T. Characterization of Precursors of Methanol Synthesis Catalysts, Copper/Zinc/Aluminum Oxides, Precipitated at Different pHs and Temperatures[J]. Appl. Catal., A, 1996, 137 (1): 105–117

    Article  Google Scholar 

  20. Figueiredo RT, Andrade HMC, Fierro JLG. Influence of the Preparation Methods and Redox Properties of Cu/ZnO/Al2O3 Catalysts for the Water Gas Shift Reaction[J]. J. Mol. Catal. A: Chem., 2010, 318 (1-2): 15–20

    Article  Google Scholar 

  21. Fujita S, Kanamori Y, Satriyo AM, et al. Methanol Synthesis from CO2 over Cu/ZnO Catalysts Prepared from Various Coprecipitated Precursors[J]. Catal. Today, 1998, 45 (1-4): 241–244

    Article  Google Scholar 

  22. Nishida K, Atake I, Li D, et al. Effects of Noble Metal-Doping on Cu/ZnO/Al2O3 Catalysts for Water–Gas Shift Reaction: Catalyst Preparation by Adopting “Memory Effect” of Hydrotalcite[J]. Appl. Catal., A, 2008, 337 (1): 48–57

    Article  Google Scholar 

  23. Atake I, Nishida K, Li D, et al. Catalytic Behavior of Ternary Cu/ZnO/Al2O3 Systems Prepared by Homogeneous Precipitation in Water-Gas Shift Reaction[J]. J. Mol. Catal. A: Chem., 2007, 275 (1–2): 130–138

    Article  Google Scholar 

  24. van Garderen N, Clemens FJ, Aneziris CG, et al. Improved γ-Alumina Support Based Pseudo-Boehmite Shaped by Micro-Extrusion Process for Oxygen Carrier Support Application[J]. Ceram. Int., 2012, 38 (7): 5481–5492

    Article  Google Scholar 

  25. Li J, Qian L, Hu L, et al. Low-temperature Hydrogenation of Maleic Anhydride to Succinic Anhydride and γ-Butyrolactone over Pseudo-Boehmite Derived Alumina Supported Metal (metal=Cu, Co and Ni) Catalysts[J]. Chin. Chem. Lett., 2016, 27 (7): 1004–1008

    Article  Google Scholar 

  26. HG/T 3553–2005. Analytical Method of Chemical Composition in Low Temperature Carbon Monoxide Shift Catalyst[S].

  27. Xu C, Zheng L, Deng D, et al. Effect of Activation Temperature on the Surface Copper Particles and Catalytic Properties of Cu-Ni-Mg-Al Oxides from Hydrotalcite-like Precursors[J]. Catal. Commun., 2011, 12 (11): 996–999

    Article  Google Scholar 

  28. Zhang Y, Zhang J, Zhang X, et al. Direct Preparation and Formation Mechanism of Belt-like Doped VO2(M) with Rectangular Cross Sections by One-step Hydrothermal Route and TheirPhase Transition and Optical Switching Properties[J]. J. Alloys Compd., 2013, 570: 104–113

    Article  Google Scholar 

  29. Zhang Y, Zhang J, Zhang X, et al. Influence of Different Additives on the Synthesis of VO2 Polymorphs[J]. Ceram. Int., 2013, 39: 8363–8376

    Article  Google Scholar 

  30. Shishido T, Yamamoto M, Li D, et al. Water-Gas Shift Reaction over Cu/ZnO and Cu/ZnO/Al2O3 Catalysts Prepared by Homogeneous Precipitation[J]. Appl. Catal., A, 2006, 303 (1): 62–71

    Article  Google Scholar 

  31. Ginés MJL, Amadeo N, Laborde M, et al. Activity and Structure-sensitivity of the Water-Gas Shift Reaction over CuZnAl Mixed Oxide Catalysts[J]. Appl. Catal., A, 1995, 131 (2): 283–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Huang  (黄驰).

Additional information

Funded by the National Natural Science Foundation of China (51572201)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Peng, D., Liu, W. et al. A Modified Co-precipitation Method to Prepare Cu/ZnO/Al2O3 Catalyst and Its Application in Low Temperature Water-gas Shift (LT-WGS) Reaction. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 876–883 (2018). https://doi.org/10.1007/s11595-018-1907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1907-8

Key words

Navigation