Skip to main content
Log in

Acute effects of the heavy metal antidotes DMPS and DMSA on circulation, respiration, and blood homoeostasis in dogs

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The heavy metal antidotes sodium-2,3-dimercaptopropane-1-sulfonate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) were investigated in anaesthetized dogs for their effects on a variety of physiological variables and parameters. In addition, the influence of both dithiols on oxygen consumption and ferrihaemoglobin production was studied in blood and red blood cells in vitro. DMPS (15 and 75 mg/kg i.v.) did not affect respiration, central venous pressure, left ventricular pressure or cardiac output and showed only marginal, statistically non-significant effects on aortic and effective perfusion pressure. In contrast to the slight, non-significant changes due to DMPS (15 mg/kg i.v.), an equimolar dose of DMSA (12 mg/kg i. v.) led to a slight transient decrease in femoral blood pressure with strong reflex tachycardia and increase in blood flow. The higher DMPS dose (75 mg/kg i.v.), however, caused marked decreases in femoral blood pressure and blood flow, strong changes in blood gases and pH, and lactacidosis. Most of the physiological variables and parameters did not return to the initial level by 60 min. The R-spike of the electrocardiogram decreased, and the T-wave increased. Experiments on the denervated hind leg indicate that DMPS may be a direct vasodilator. The fall of blood pressure due to DMPS was markedly reduced when 30% ferrihaemoglobin had been formed by 4-dimethylaminophenol. HCl (DMAP). The highest DMPS dose (150 mg/kg i.v.) provoked circulatory failure and respiratory arrest. Artificial ventilation with room air restored spontaneous respiration, but one of three animals did not survive this dose for more than 90 min. DMPS and DMSA reacted with oxygen. In phosphate buffer, pH 7.4,1 mol O2 appears to be taken up by 2 mol DMPS. The consumption of O2 by DMPS was less in samples of human and canine blood or erythrocyte suspensions than in buffer solution. DMPS caused a greater loss of oxygen than DMSA. DMPS and DMSA alone did not produce ferrihaemoglobin, but the ferrihaemoglobin content of erythrocyte suspensions increased over the time when DMPS was added in the presence of 30% ferrihaemoglobin. Such an action was not observed at the same ferrihaemoglobin content in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H, Frei E (1958) Gekoppelte Oxydation von Formiat und Thiolverbindungen durch Katalase. Helv Chim Acta 41: 361–371

    Google Scholar 

  • Akera T, Fox AL, Greeff K (1981) Substances possessing inotropic properties similar to cardiac glycosides. IV. Sulfhydryl blocking agents. In: Greef K (ed.) Cardiac glycosides, Part I, Handb Exper Pharmacol, vol 56/1. Springer, Berlin, Heidelberg, New York, pp 464–468

    Google Scholar 

  • Aposhian HV (1983) DMSA and DMPS — water soluble antidotes for heavy metal poisoning. Ann Rev Pharmacol Toxicol 23: 193–215

    Article  Google Scholar 

  • Aposhian HV, Tadlock CH, Moon TE (1981) Protection of mice against the lethal effects of sodium arsenite. A quantitative comparison of a number of chelating agents. Toxicol Appl Pharmacol 61: 385–392

    Article  PubMed  Google Scholar 

  • Aposhian HV, Mershon MM, Brinkley FB, Hsu CA, Hackley BE (1982) Anti-Lewisite activity and stability of meso-dimercaptosuccinic acid and 2,3-dimercapto-1-propane sulfonic acid. Life Sci 31: 2149–2156

    Article  PubMed  Google Scholar 

  • Barron ESG, Miller ZB, Kalnitzky G (1947) The oxidation of dithiols. Biochem J 41: 62–68

    Google Scholar 

  • Brown DA, Kwiatkowski D (1976) A note on the effect of dithiothreitol (DTT) on the depolarization of isolated sympathetic ganglia by carbachol and bromoacetylcholine. Br J Pharmacol 56: 128–130

    PubMed  Google Scholar 

  • Bunn HF, Forget BG (1986) Hemoglobin oxidation: Methemoglobin, methemoglobinemia, and sulfhemoglobinemia. In: Bunn HF, Forget BG (eds) Hemoglobin: molecular, genetic and clinical aspects. W Saunders Company, Philadelphia

    Google Scholar 

  • Chenoweth MB (1946) The cardio-vascular actions of 2,3-dimercaptopropanol (BAL). J Pharmacol 87: Suppl 41–54

    Google Scholar 

  • Costa M, Pecci L, Pensa B, Cannella C (1977) Hydrogen peroxide involvement in the rhodanese inactivation by dithiothreitol. Biochem Biophys Res Commun 78: 596–603

    Article  PubMed  Google Scholar 

  • Eyer P, Kiese M, Lipowsky G, Weger N (1974) Reactions of 4-dimethylaminophenol with hemoglobin, and autoxidation of 4-dimethylaminophenol. Chem Biol Interact 8: 41–59

    Article  PubMed  Google Scholar 

  • Eyer P, Hertle H, Kiese M, Klein G (1975) Kinetics of ferrihemoglobin formation by some reducing agents and the role of hydrogen peroxide. Mol Pharmacol 11: 326–334

    PubMed  Google Scholar 

  • Graziano JH, Cuccia D, Friedheim E (1978) Potential usefulness of 2,3-dimercaptosuccinic acid for the treatment of arsenic poisoning. J Pharmacol Exp Ther 207: 1051–1055

    PubMed  Google Scholar 

  • Karlin A, Bartels E (1966) Effects of blocking sulphydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim Biophys Acta 126: 525–535

    PubMed  Google Scholar 

  • Klaassen CD (1980) Toxicology. Principles of toxicology. In: Goodman and Gilman's The pharmacological basis of therapeutics 6th edn. MacMillan Publishing Co., Inc., New York, pp 1602–1637

    Google Scholar 

  • Klimmek R, Fladerer H, Szinicz L, Weger N, Kiese M (1979a) Effects of 4-dimethylaminophenol and Co2EDTA on circulation, respiration, and blood homeostasis in dogs. Arch Toxicol 42: 75–84

    Article  PubMed  Google Scholar 

  • Klimmek R, Fladerer H, Weger N (1979b) Circulation, respiration, and blood homeostasis in cyanide-poisoned dogs after treatment with 4-dimethylaminophenol or cobalt compounds. Arch Toxicol 43: 121–133

    Article  PubMed  Google Scholar 

  • Klimova LK (1958) Zur Pharmakologie des neuen Antidots Unithiol (Translation from Russian). Farmakol Toksikol 21: 53–59

    Google Scholar 

  • Kramer K, Kirchhoff HW (1969) Anwendung densitometrischer, thermischer und radiologischer Methoden in der Klinik. 2. Oxymetrie-Symposium 10–12 may 1968. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Luganskij NI, Loboda YI (1960) The effect of unithiol on the distribution, accumulation, and elimination of radioactive arsenic (As76) from rabbits (Translation). Trudy Vseyoyuz Nauch Tekh Konf Pricnen Radioaktiv Stabil. Izotopov i Nauke, 1957. Med Radiobiol, pp 392–397

  • Luganskij NI, Mizyukova IG, Lokantsev DS (1959) The mechanism of antidotal activity of unithiol in poisoning with arsenic compounds (Translation). Tiolovye Soedinen V. Med Ukrain Nauch-Issledovatel. Sanit-Khim Inst Trudy Nauch Konf Kiev, 1957, pp 115–130

  • Okonishnikova IE (1965) Experimental therapy and prophylaxis of acute poisoning with arsenic compounds. Gig Tr Prof Zabol 9: 38–43

    Google Scholar 

  • Rappoport DA, Green JA, Gast JH (1956) Formate oxidation by erythrocytes. Arch Biochem Biophys 63: 343–351

    Article  PubMed  Google Scholar 

  • Sanotskij WA, Sotowa MG, Jefimow WI, Rudnitskaja EI, Federowskij LL, Furajewa LP (1967) Möglichkeit der intravenösen Anwendung von Unithiol in hohen Dosen (Translation from Russian). Farmakol Toksikol 30: 480–482

    PubMed  Google Scholar 

  • Schad H, Brechteisbauer H, Krainer K (1977) Studies on the suitability of a cyanide dye (Viher-Testr) for indicator dilution technique and its application to the measurement of pulmonary artery and aortic flow. Pflügers Arch 370: 139–144

    Article  Google Scholar 

  • Smith RP, Gosselin RE (1964) The influence of methemoglobinemia on the lethality of some toxic anions. II. Sulfide. Toxicol Appl Pharmacol 6: 584–592

    Article  Google Scholar 

  • Stern KG (1932) Über die Hemmungstypen und den Mechanismus der katalatischen Reaktion. 3. Mitteilung über Katalase. Z Physiol Chem 209: 176–206

    Google Scholar 

  • Stocken LA, Thompson RHS (1946) British Anti-Lewisite. 3. Arsenic and thiol excretion in animals after treatment of Lewisite burns. Biochem J 40: 548–554

    Google Scholar 

  • Strömme JH (1963) Methemoglobin formation induced by thiols. Biochem Pharmacol 12: 937–948

    Article  PubMed  Google Scholar 

  • Szinicz L, Albrecht GJ, Weger N (1981) Effect of various compounds on the reaction of tris-(2-chloroethyl)amine with ribonucleic acid in vitro and on its toxicity in mice. Arzneimittelforschung 31: 1–5

    PubMed  Google Scholar 

  • Szinicz L, Wiedemann P, Häring H, Weger N (1983) Effects of repeated treatment with sodium-2,3-dimercaptopropane-1-sulfonate in beagle dogs. Arzneimittelforschung 6: 818–821

    Google Scholar 

  • Tadlock CH, Aposhian HV (1980) Protection of mice against the lethal effects of sodium arsenite by 2,3-dimercapto-1-propane-sulfonic acid and dimercaptosuccinic acid. Biochem Biophys Res Comm 94: 501–507

    Article  PubMed  Google Scholar 

  • Ting KS, Liang YI, Shi J, Chen W, Gu T et al. (1965) Chelate stability of sodium dimercapto-succinate on the intoxications from many metals. Chin Med J 51: 304–307

    Google Scholar 

  • Torchinsky YM (1981) Sulfur in proteins. Pergamon Press, Oxford

    Google Scholar 

  • Trotta PP, Pinkus LM, Meister A (1974) Inhibition by dithiothreitol of the utilization of glutamine by carbamyl phosphate synthetase. J Biol Chem 249: 1915–1921

    PubMed  Google Scholar 

  • Warburg O (1926) Über den Stoffwechsel von Tumoren. Springer, Berlin

    Google Scholar 

  • Webb EC, van Heyningen R (1947) The action of British Antilewisite (BAL) on enzyme systems. Biochem J 41: 74–82

    Google Scholar 

  • West JB (1977) Ventilation/blood flow and gas exchange (3d edn). Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne

    Google Scholar 

  • Wiedemann P, Fichtl B, Szinicz L (1982) Pharmacokinetics of14C-DMPS (sodium-1,3-14C-2,3-dimercaptopropane-1-sulphonate) in beagle dogs. Biopharm Drug Dispos 3: 267–274

    PubMed  Google Scholar 

  • Wildenauer DB, Reuther H, Weger N (1982) Interaction of the chelating agent 2,3-dimercaptopropane-1-sulfonate with red blood cells in vitro. I. Evidence for carrier-mediated transport. Chem Biol Interact 42: 165–177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimmek, R., Krettek, C. & Werner, H.W. Acute effects of the heavy metal antidotes DMPS and DMSA on circulation, respiration, and blood homoeostasis in dogs. Arch Toxicol 67, 428–434 (1993). https://doi.org/10.1007/BF01977405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01977405

Key words

Navigation