Advertisement

Transgenic Research

, Volume 3, Issue 6, pp 376–387 | Cite as

Complementation of an alcohol dehydrogenase-deficientNicotiana plumbaginifolia mutant by transformation with theArabidopsis thaliana Adh gene

  • P. Rousselin
  • N. Toro Perea
  • R. Dolferus
  • B. Tahar
  • M. Caboche
  • M. Jacobs
Papers

Abstract

An alcohol dehydrogenase-deficient (ADH) mutant ofNicotiana plumbaginifolia, selected on the basis of ethanol resistance, was restored for ADH activity by transformation with anAdh gene fromArabidopsis thaliana expressed under the control of its own promoter or the CaMV 35S promoter. The expression in various organs (seed, root, leaf and pollen) was analysed at the protein and RNA levels as well as byin situ detection of ADH activity. The analysis of spatial and temporal regulation of theA. thaliana Adh gene expression suggests that ADH expression is controlled at the transcriptional level.

Keywords

alcohol dehydrogenase Arabidopsis thaliana functional complementation gene expression Nicotiana plumbaginifolia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benfey, P.N., Ren, L. and Chua, N.H. (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns.EMBO J 8, 2195–202.Google Scholar
  2. Bevan, M. (1984) BinaryAgrobacterium vectors for plant transformation.Nucl. Acids Res. 12, 8711–21.Google Scholar
  3. Bourgin, J.P., Chupeau, Y. and Missonier, C. (1979) Plant regeneration from mesophyll protoplasts of severalNicotiana species.Physiol. Plant. 45, 288–92.Google Scholar
  4. Chang, C. and Meyerowitz, E.M. (1986) Molecular cloning and DNA sequence of theArabidopsis thaliana alcohol dehydrogenase gene.Proc. Natl Acad. Sci. USA 83, 1408–12.Google Scholar
  5. Chang, C. and Meyerowitz, E.M. (1987) Genetic transformation ofArabidopsis-Complementation of an alcohol dehydrogenase null mutant with theArabidopsis Adh gene. Third International Meeting on Arabidopsis, Michigan State University, abstract 117.Google Scholar
  6. Davis, B.J. (1964) Disc electrophoresis II. Method and application to human serum protein.Ann. NY Acad. Sci. 121, 404–27.Google Scholar
  7. Dennis, E.S., Gerlach, W.L., Pryor, A.J., Bennetzen, J.L., Inglis, A., Llewellyn, D., Sachs, M.M., Ferl, R.J., and Peacock, W.J. (1984) Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize.Nucl. Acids Res. 12, 3983–4000.Google Scholar
  8. Dennis, E.S., Sachs, M.M., Gerlach, W.L., Finnegan, E.J. and Peacock, W.J. (1985) Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize.Nucl. Acids Res. 13, 727–43.Google Scholar
  9. Dolferus, R. (1988) Characterization, cloning and molecular analysis of the expression of theArabidopsis Adh gene. Thesis. Vrije Universiteit Brussel.Google Scholar
  10. Dolferus, R. and Jacobs, M. (1991) Another ADH system... fromArabidopsis thaliana: an overview.Maydica 36, 169–87.Google Scholar
  11. Dolferus, R., Marbaix, G. and Jacobs, M. (1985) Alcohol dehydrogenase inArabidopsis: analysis of the induction phenomenon in plantlets and tissue cultures.Mol. Gen. Genet. 199, 256–64.Google Scholar
  12. Dolferus, R., Van Den Bosshe, D. and Jacobs, M. (1990) Sequence analysis of two null-mutant alleles of the singleArabidopsis Adh locus.Mol. Gen. Genet. 224, 297–302.Google Scholar
  13. Feinberg, A.P. and Vogelstein, B. (1984) Addendum: a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 137, 266–7.Google Scholar
  14. Ferl, R.J., Breennan, M.D. and Schwartz, D. (1980)In vitro translation of maize alcohol dehydrogenase (E.C. 1.1.1.1.): evidence for the anaerobic induction of messenger RNA.Biochem. Genet. 18, 681–92.Google Scholar
  15. Fischer, M. and Schwartz, D. (1973) Dissociation and reassociation of maize alcohol dehydrogenase: allelic differences in requirement for zinc.Mol. Gen. Genet. 127, 33–8.Google Scholar
  16. Freeling, M. (1973) Simultaneous induction by anaerobiosis or 2,4 D of multiple enzymes specified by two unlinked genes: differential ADH1-ADH2 expression in maize.Mol. Gen. Genet. 127, 215–27.Google Scholar
  17. Freeling, M. (1976) Intragenic recombination in maize: pollen analysis methods and the effect of parental Adh1+isoalleles.Genetics 83, 701–17.Google Scholar
  18. Garger, S.J., Griffith, O.M. and Grill, L.K. (1983) Rapid purification of plasmid DNA by a single centrifugation in a two-step cesium chloride-ethidium bromide gradient.Biochem. Biophys. Res. Comm. 117, 835–42.Google Scholar
  19. Gerlach, W.L., Sachs, M.M., Llewellyn, D., Finnegan, E.J. and Dennis, E.S. (1986) Maize alcohol dehydrogenase: a molecular perspective. In Blonstein, A. and King, P.J. eds,A Genetic Approach to Plant Biochemistry, pp. 73–100. Vienna New York: Springer-Verlag.Google Scholar
  20. Gregerson, R., McLean, M., Beld, M., Gerats, A. and Strommer, J. (1991) Structure, expression, chromosomal location and product of the gene encoding ADH1 inPetunia.Pl. Mol. Biol. 17, 37–48.Google Scholar
  21. Guerrero, F.D., Crossland, L., Smutzer, G.S., Hamilton, D.A. and Mascarenhas, J.P. (1990) Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco.Mol. Gen. Genet. 224, 161–8.Google Scholar
  22. Hageman, R.H. and Flesher, D. (1960) The effect of anaerobic environment on the activity of alcohol dehydrogenase and other enzymes of corn seedlings.Arch. Biochem. Biophys. 87, 203–9.Google Scholar
  23. Installé, P., Negrutiu, I. and Jacobs, M. (1985) Protoplastderived plants inNicotiana plumbaginifolia: improving the regeneration response of wild type and mutant cultures.J. Pl. Physiol. 119, 443–54.Google Scholar
  24. Jacobs, M., Dolferus, R. and Van Den Bossche, D. (1988) Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants ofArabidopsis thaliana (L.) Heynh.Biochem. Genet. 26, 105–22.Google Scholar
  25. Khandjian, E.W. (1986) UV crosslinking of RNA to nylon membrane enhances hybridization signals.Mol. Bio. Rep. 11, 107–15.Google Scholar
  26. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophageT4.Nature 227, 680–5.Google Scholar
  27. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982)Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.Google Scholar
  28. McCormick, S., Twell, D., Wing, R., Ursin, V., Yamaguchi, J. and Larabell, S. (1989) Anther-specific genes: molecular characterization and promoter analysis in transgenic plants. In Lord, E. and Bernier, G. eds.,Plant Reproduction: from Floral Induction to Pollination, pp. 128–35. Rockville, MD: American Society of Plant Physiologists.Google Scholar
  29. Negrutiu, I., De Brouwder, D., Dirks, R. and Jacobs, M. (1985) Amino acids auxotrophs from protoplast culture ofNicotiana plumbaginifolia Viviani. I BuDR enrichment selection, plant regeneration and general characterization.Mol. Gen. Genet. 199, 330–7.Google Scholar
  30. Negrutiu, I., Dirks, R. and Jacobs, M. (1983) Regeneration of fully nitrate reductase-deficient mutants from protoplast culture ofN. plumbaginifolia.Theor. Appl. Genet. 66, 341–7.Google Scholar
  31. Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G. and Sala, F. (1987) Hybrid genes in the analysis of transformation conditions. I: setting up a simple method for direct gene transfer in plant protoplasts.Pl. Mol. Biol. 8, 363–73.Google Scholar
  32. Ooms, G., Hooykaas, P.J.J., Van Veen, R.J.M., Van Beelen, P., Regensburg-Twink, T.G.J. and Schilperoort, R.A. (1982) Octopine Ti plasmid deletion mutants ofAgrobacterium tumefaciens with emphasis on the right side of the T-region.Plasmid 7, 15–29.Google Scholar
  33. Roberts, J.K.M., Callis, J., Jardelzky, O., Walbot, V. and Freeling, M. (1984) Cytoplasmic acidosis as a determinant of flooding intolerance in plants.Proc. Natl Acad. Sci. USA 81, 6029–33.Google Scholar
  34. Rousselin, P., Lepingle, A., Faure, J.D., Bitoun, R. and Caboche, M. (1990) Ethanol-resistant mutants ofNicotiana plumbaginifolia are deficient in the expression of pollen and seed alcohol dehydrogenase activity.Mol. Gen. Genet. 222, 409–15.Google Scholar
  35. Sachs, M.M., Freeling, M. and Okimoto, R. (1980) The anaerobic proteins of maize.Cell 20, 761–8.Google Scholar
  36. Sanders, P.R., Winter, J.A., Barnason, A.R., Rogers, S.G. and Fraley, R.T. (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants.Nucl. Acids Res. 15, 1543–58.Google Scholar
  37. Schwartz, D. and Endo, T. (1966) Alcohol dehydrogenase polymorphisms in maize — simple and compound loci.Genetics 53, 709–15.Google Scholar
  38. Schwartz, D. and Osterman, J. (1976) A pollen selection system for alcohol dehydrogenase-negative mutants in plants.Genetics 83, 63–5.Google Scholar
  39. Shields, C.R., Orton, T.J. and Stuber, C.W. (1983) An outline of general resource needs and procedures for the electrophoretic separation of active enzymes from plant tissue. In Tanksley, S.D. and Orton, T.J. edsIsozymes in Plant Genetics and Breeding, Part A, pp. 443–467. Amsterdam: Elsevier Science Publishers.Google Scholar
  40. Shimamoto, K. and King, P.J. (1983)Adh1-0 selectable marker inZea mays cell culture.Mol. Gen. Genet. 191, 271–5.Google Scholar
  41. Thomas, S.P. (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl Acad. Sci. USA 77, 5201–5.Google Scholar
  42. Towbin, H., Staehelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl Acad. Sci. USA 76, 4350–4.Google Scholar
  43. Van Haute, E., Joos, H., Maes, M., Warren, G., Van Montagu, M. and Schell, J. (1983) Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR 322 a novel strategy for the reversed genetics of the Ti plasmid ofAgrobacterium tumefaciens.EMBO J 2, 411–8.Google Scholar
  44. Vaucheret, H., Chabaud, M., Kronenberger, J. and Caboche, M. (1990) Functional complementation of tobacco andNicotiana plumbaginifolia nitrate reductase deficient mutants by transformation with the wild-type allele of the tobacco structural genes.Mol. Gen. Genet. 220, 468–74.Google Scholar
  45. Verwoerd, T.C., Dekker, B.M.M. and Hoekema, A. (1989) A small-scale procedure for the rapid isolation of plant RNAs.Nucl. Acids Res. 17, 2362.Google Scholar
  46. Vincentz, M. and Caboche, M. (1991) Constitutive expression of nitrate reductase allows normal growth and development ofNicotiana plumbaginifolia plants.EMBO J 10, 1027–35.Google Scholar
  47. Widholm, J.M. and Kishinami, I. (1988) Allyl alcohol selection for lower alcohol dehydrogenase activity inNicotiana plumbaginifolia cultured cells.Pl. Physiol. 86, 266–9.Google Scholar
  48. Xie, Y. and Wu, R. (1989) Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones.Pl. Mol. Biol. 13, 53–68.Google Scholar
  49. Yanisch-Peron, C., Viera, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.Gene 33, 103–9.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Rousselin
    • 1
  • N. Toro Perea
    • 2
  • R. Dolferus
    • 2
  • B. Tahar
    • 2
  • M. Caboche
    • 1
  • M. Jacobs
    • 2
  1. 1.Laboratoire de Biologie CellulaireINRA Centre de VersaillesVersailles cedexFrance
  2. 2.Laboratorium voor PlantengeneticaVrife Universiteit BrusselGenesius-RodeBelgium

Personalised recommendations