Skip to main content
Log in

‘Plantibodies’: a flexible approach to design resistance against pathogens

  • Nematodes
  • Published:
Netherlands Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Engineering resistance against various diseases and pests is hampered by the lack of suitable genes. To overcome this problem we started a research program aimed at obtaining resistance by transfecting plants with genes encoding monoclonal antibodies against pathogen specific proteins. The idea is that monoclonal antibodies will inhibit the biological activity of molecules that are essential for the pathogenesis. Potato cyst nematodes are chosen as a model and it is thought that monoclonal antibodies are able to block the function of the saliva proteins of this parasite. These proteins are, among others, responsible for the induction of multinucleate transfer cells upon which the nematode feeds. It is well documented that the ability of antibodies to bind molecules is sufficient to inactivate the function of an antigen and in view of the potential of animals to synthesize antibodies to almost any molecular structure, this strategy should be feasible for a wide range of diseases and pests.

Antibodies have several desirable features with regard to protein engineering. The antibody (IgG) is a Y-shaped molecule, in which the domains forming the tips of the arms bind to antigen and those forming the stem are responsible for triggering effector functions (Fc fragments) that eliminate the antigen from the animal. Domains carrying the antigen-binding loops (Fv and Fab fragments) can be used separately from the Fc fragments without loss of affinity. The antigen-binding domains can also be endowed with new properties by fusing them to toxins or enzymes. Antibody engineering is also facilitated by the Polymerase Chain Reaction (PCR). A systematic comparison of the nucleotide sequence of more than 100 antibodies revealed that not only the 3′-ends, but also the 5′-ends of the antibody genes are relatively conserved. We were able to design a small set of primers with restriction sites for forced cloning, which allowed the amplification of genes encoding antibodies specific for the saliva proteins ofGlobodera rostochiensis. Complete heavy and light chain genes as well as single chain Fv fragments (scFv), in which the variable parts of the light (VL) and heavy chain (VH) are linked by a peptide, will be transferred to potato plants. A major challenge will be to establish a correct expression of the antibody genes with regard to three dimensional folding, assembly and intracellular location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batra, J.K., Chaudhary, V.K., Fitzgerald, D. & Pastan, I., 1990. TGF-alpha-anti-Tac(Fv)-PE40: A bifunctional toxin cytotoxic for cells with EGF or IL2 receptors. Biochemical and Biophysical Research Communications 171: 1–6.

    Article  PubMed  Google Scholar 

  • Berzofsky, J.A., 1984. Monoclonal antibodies as probes of antigenic structure. In: Monoclonal and anti-idiotypic antibodies: Probes for receptor structure and function. Alan R. Liss, New York. p. 1–19.

    Google Scholar 

  • Bibi, E. & Laskov, R., 1990. Selection and application of antibodies modifying the function of β-lactamase. Biochimica et Biophysica Acta 1035: 237–241.

    PubMed  Google Scholar 

  • Chaudhary, V.K., Gallo, M.G., Fitzgerald, D.J. & Pastan, I., 1990. A recombinant single-chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin. Proceedings of the National Academy of Sciences, U.S.A. 87: 9491–9494.

    Google Scholar 

  • Cuozzo, M., O'Connell, K.M., Kaniewski, W., Fang, R.X., Chua, N.H. & Tumer, N.E., 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6: 549–557.

    Article  Google Scholar 

  • Dahmus, M.E., Laybourn, P. & Borrebaeck, C.A.K., 1988. Production of monoclonal antibody against electrophoretic purified RNA polymerase II subunits using in vitro immunization. Molecular Immunology 25: 997–1003.

    Article  PubMed  Google Scholar 

  • Delannay, X., LaVallee, B.J., Proksch, R.K., Fuchs, R.L., Sims, S.R., Greenplate, J.T., Marrone, P.G., Dodson, R.B., Augustine, J.J., Layton, J.G. & Fischhoff, D.A., 1989. Field performance of transgenic tomato plants expressing theBacillus thuringiensis var.Kurstaki insect control protein. Bio/Technology 7: 1265–1269.

    Google Scholar 

  • Düring, K., Hippe, S., Kreuzaler, F. & Schell, J., 1990. Synthesis and self-assembly of a functional monoclonal antibody in transgenicNicotiana tabacum. Plant Molecular Biology 15: 281–293.

    Article  PubMed  Google Scholar 

  • Ellis, R.J. & Van der Vies, S.M., 1991. Molecular chaperones. Annual Review of Biochemistry 60: 321–347.

    Article  PubMed  Google Scholar 

  • Ellis, R.J. & Hemmingsen, S.M., 1989. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends in Biochemical Sciences 14: 339–342.

    Article  PubMed  Google Scholar 

  • Feramisco, J.R., Clark, R., Wong, G., Arnheim, N., Milley, R. & McCormick, F., 1985. Transient reversion ofras oncogene-induced cell transformation by antibodies specific for amino acid 12 ofras protein. Nature 314: 639–642.

    Article  PubMed  Google Scholar 

  • Getzoff, E.D., Geysen, H.M., Rodda, S.J., Alexander, H., Tainer, J.A. & Lerner, R.A., 1987. Mechanisms of antibody binding to a protein. Science 235: 1191–1196.

    PubMed  Google Scholar 

  • Geysen, H.M., Tainer, J.A., Rodda, S.J., Mason, T.J., Alexander, H., Getzoff, E.D. & Lerner, R.A., 1987. Chemistry of antibody binding to a protein. Science 235: 1184–1190.

    PubMed  Google Scholar 

  • Hiatt, A., Cafferkey, R. & Bowdish, K., 1989. Production of antibodies in transgenic plants. Nature 342: 76–78.

    Article  PubMed  Google Scholar 

  • Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F. & Boulter, D., 1987. A novel mechanism of insect resistance engineered into tobacco. Nature 300: 160–163.

    Article  Google Scholar 

  • Hoekema, A., Huisman, M.J., Molendijk, L., Van den Elzen, P.J.M. & Cornelissen, B.J.C., 1989. The genetic engineering of two commercial potato cultivars for resistance to potato virus X. Bio/Technology 7: 273–278.

    Article  Google Scholar 

  • Horwitz, A.H., Chang, C.P., Better, M., Hellstrom, K.E. & Robinson, R.R., 1988. Secretion of functional antibody and Fab fragments from yeast cells. Proceedings of the National Academy of Sciences, U.S.A. 85: 8678–8682.

    Google Scholar 

  • Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting-Mees, M., Burton, D.R., Benkovic, S.J. & Lerner, R., 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281.

    PubMed  Google Scholar 

  • Johnson, R., Narvaez, J., An, G. & Ryan, C., 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense againstManduca sexta larvae. Proceedings of the National Academy of Sciences, U.S.A. 86: 9871–9875.

    Google Scholar 

  • Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G., 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321: 522–525.

    Article  PubMed  Google Scholar 

  • Kenett, D., Fleminger, G., Katchalski-Katzir, E. & Poljak, R.J., 1987. Lysozyme bound to the D1.3 monoclonal antibody retains enzymatic activity in assays using N-acetylglucosamine oligomers as substrate. Molecular Immunology 24: 313–316.

    Article  PubMed  Google Scholar 

  • Kipps, T.J., 1985. Switching the isotype of monoclonal antibodies. In: Springer, T.A. (Ed.), Hybridoma technology in the biosciences and medicine. Plenum Press, New York. p. 89–101.

    Google Scholar 

  • Köhler, G. & Milstein, C., 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 52–53.

    Article  PubMed  Google Scholar 

  • Milstein, C. & Cuello, A.C., 1984. Hybrid hybridomas and the production of bi-specific monoclonal antibodies. Immunology Today 5: 299–304.

    Article  Google Scholar 

  • Novòtny, J., Handschumacher, M. & Bruccoleri, R.E., 1987. Protein antigenicity: a static surface property. Immunology Today 8: 26–31.

    Article  Google Scholar 

  • Novòtny, J., Handschumacher, M., Haber, E., Bruccoleri, R.E., Carlson, W.B., Fanning, D.W., Smith, J.A. & Rose, G.D., 1986. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proceedings of the National Academy of Sciences, U.S.A. 83: 226–230.

    Google Scholar 

  • Orlandi, R., Gussow, D.H., Jones, P.T. & Winter, G., 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proceedings of the National Academy of Sciences, U.S.A. 86: 3833–3837.

    Google Scholar 

  • Pfeiffer, N.E., Mehlhaff, P.M., Wylie, D.E. & Schuster, S.M., 1987. Topographical separation of the catalytic sites of asparagine synthetase explored with monoclonal antibodies. The Journal of Biological Chemistry 262: 11565–11570.

    PubMed  Google Scholar 

  • Plückthun, A., 1991. Antibody engineering: advances from the use ofEscherichia coli expression systems. Bio/Technology 9: 545–551.

    Article  PubMed  Google Scholar 

  • Powell Abel, P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T. & Beachy, R.N., 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    PubMed  Google Scholar 

  • Riabowol, K.T., Vosatka, R.J., Ziff, E.B., Lamb, N.J. & Feramisco, J.R., 1988. Microinjection offos-specific antibodies blocks DNA synthesis in fibroblast cells. Molecular and Cellular Biology 8: 1670–1676.

    PubMed  Google Scholar 

  • Rungger, D., Rungger-Brandle, E., Chaponnier, C. & Gabbiani, G., 1979. Intranuclear injection of anti-actin antibodies intoXenopus oocytes blocks chromosome condensation. Nature 282: 320–321.

    Article  PubMed  Google Scholar 

  • Shin, S.U. & Morrison, S.L., 1989. Production and properties of chimeric antibody molecules. In: Langone, J.J. (Ed.), Methods in enzymology, Vol. 178. Academic Press, San diego, CA. p. 459–527.

    Google Scholar 

  • Shirasu, Y., Shimada, Y., Takemura, K., Izumi, T. & Miyazaki, H., 1988. Production and characterization of monoclonal antibodies to human pancreatic elastase 2. Hybridoma 7: 485–493.

    PubMed  Google Scholar 

  • Smith, R.G. & Baumgarten, B., 1987. Monoclonal antibodies that recognize a broad range of mammalian terminal deoxynucleotidyl transferases. Hybridoma 6: 29–45.

    PubMed  Google Scholar 

  • Stieger, M., Neuhaus, G., Momma, T., Schell, J. & Kreuzaler, F., 1991. Self assembly of immunoglobulins in the cytoplasm of the algaAcetabularia mediterranea. Plant Science 73: 181–190.

    Article  Google Scholar 

  • Tainer, J.A., Getzoff, E.D., Alexander, H., Houghteen, R.A., Olson, A.J., Lerner, R.A. & Hendrickson, W.A., 1984. The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 312: 127–124.

    PubMed  Google Scholar 

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M. & Leemans, J., 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  Google Scholar 

  • Winter, G. & Milstein, C., 1991. Man-made antibodies. Nature 349: 293–299.

    Article  PubMed  Google Scholar 

  • Wood, C.R., Boss, M.A., Kenten, J.H., Calvert, J.E., Roberts, N.A. & Emtage, J.S., 1985. The synthesis and in vivo assembly of functional antibodies in yeast. Nature 314: 446–449.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schots, A., De Boer, J., Schouten, A. et al. ‘Plantibodies’: a flexible approach to design resistance against pathogens. Netherlands Journal of Plant Pathology 98 (Suppl 2), 183–191 (1992). https://doi.org/10.1007/BF01974485

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01974485

Additional keywords

Navigation