Skip to main content
Log in

Toxicokinetics of diethylene glycol (DEG) in the rat

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Oral doses of 1 and 5 ml/kg14C-diethylene glycol (DEG) given to rats were rapidly and almost completely absorbed, the invasion constants being 2.95 h and 4.24 h−1. The kinetics of invasion were determined with the method of residuals (Rowland and Tozer 1989) and by reconstruction of the invasion curves according to Kübier (1970).14C-DEG was rapidly distributed from the blood into the organs and tissues in the order kidneys > brain > spleen > liver > muscle > fat, i.e. the same order as the blood flow. The relative volume of distribution, app. VD, was determined at 298 ml, indicating distribution over the whole body. After oral doses of 1, 5, and 10 ml14C-DEG/kg 64, 87, and 91% of14C activity in rat blood disappeared in 12–16 h with a half-life of 3.4 h and the remaining 9, 5, and 4% with half-lives of 39 h, 45 h, and 49 h. A total of 73–96% of14C activity in blood was excreted with the urine and 0.7–2.2% with the faeces. From the cumulative urinary excretion kinetics half-lives of 6 h were determined for doses of 1 and 5 ml/kg and 10 h for the dose of 10 ml/kg. After doses of 5 ml/kg and 10 ml/kg14C-DEG semi-logarithmic plots of elimination rate versus time were constant for 5 and 9 h, respectively, indicating that DEG accelerated its renal elimination by inducing osmotic diuresis. Thereafter urinary excretion followed first order kinetics with elimination half-lives of 3.6 h. After oral doses of 5 ml/kg14C-DEG given to rats of 336 g body weight with an app. VD of 297 ml, the total clearance of14C activity was determined at 63 ml/h, and the renal clearance of unmetabolized DEG was 66 ml/h. The ratio of ClDEG to Clinulin = 0.64 indicated that DEG and its metabolite 2-hydroxyethoxyacetate (2-HEAA) were reabsorbed from the tubuli into the blood capillaries. DEG produced metabolic acidosis, which was completely balanced after doses of 1 and 5 ml/kg, but doses greater than 10 ml/kg produced non-compensated metabolic acidosis, hydropic degeneration of the tubuli, oliguria, anuria, accumulation of urea-N, and death in uraemic coma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auzépy P, Taktak H, Toubas PL, Deparis M (1973) Intoxications aiguespar l'ethylene glycol et le diethylene glycol chez l'adulte. Deux cas avec guerison. Semin Hop Paris 19: 1371–1374

    Google Scholar 

  • Bekersky J, Fishman L, Kaplan SA, Colburn WA (1980) Renal clearance of salicylic acid and salicyluric acid in the rat and in the isolated perfused rat kidney. J Pharmacol Exp Ther 212: 309–314

    PubMed  Google Scholar 

  • Bergmeyer HU (1974) Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, 3. Auflage

    Google Scholar 

  • Beutler HO, Becker J, Michal G, Walter E (1980) Rapid method for the determination of oxalate. Fresenius Z Anal Chem 301: 186–187

    Article  Google Scholar 

  • Bowie MD, McKenzie D (1972) Diethylene glycol poisoning in children. S Afr Med J 46: 931–934

    PubMed  Google Scholar 

  • Braun WH, Young JD (1977) Identification of β-hydroxyethoxyacetic acid as the major urinary metabolite of 1,4-dioxane in the rat. Toxicol Appl Pharmacol 39: 33–38

    Article  PubMed  Google Scholar 

  • Calvery HO, Klumpp TG (1939) The toxicity for human beings of diethylene glycol with sulfanilamide. South Med J 32: 1105–1109

    Google Scholar 

  • David DJ, Spiker DA (1979) The acute toxicity of ethanol: dosage and kinetic nomograms. Vet Hum Toxicol 21: 272–276

    PubMed  Google Scholar 

  • Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) (1990) Goodman and Gilman's the pharmacological basis of therapeutics 8th ed. Pergamon Press, New York and Oxford, p. 1679

    Google Scholar 

  • Gutmann J, Wahlefeld AW (1974)l-(+)-Laktat: Bestimmung mit Laktat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, 3. Aufl, pp 1510–1514

    Google Scholar 

  • Haag HB, Ambrose AM (1937) Studies on the physiological effect of diethylene glycol. II. Toxicity and fate. J Pharmacol Exp Ther 59: 93–100

    Google Scholar 

  • Hecht SS, Young R (1981) Metabolic α-hydroxylation of N-nitrosomor-pholine and 3,3,5,5-tetradeutero-N-nitrosomorpholine in the F 344 rat. Cancer Res 41: 5039–5043

    PubMed  Google Scholar 

  • Hems R, Ross BD, Berry MN, Krebs HA (1966) Gluconeogenesis in the perfused rat liver. Biochem J 101: 284–292

    PubMed  Google Scholar 

  • Iles RA, Cohen RD, Rist AH, Baron PG (1977) The mechanism of inhibition by acidosis of gluconeogenesis from lactate. Biochem J 164: 185–191

    PubMed  Google Scholar 

  • Johnson G, Stubbs WA, Woods HF, Alberti KGM (1974) Salicylate-induced hypoglycemia: possible mechanism. Eur J Clin Invest 4: [5] 325

    Google Scholar 

  • Klimm C (1991) Die biologische Oxidation von N-Hydroxy-4-chloracetanilid mit Human-Hämoglobin und Anhang: Verteilungskoeffizienten von Diethylenglykol, Ethylenglykol, Ethanol und Methanol. Diplomarbeit Fakultät Chemie-Pharmazie, LM-Univ. München

    Google Scholar 

  • Krebs HA, Hems R, Weidemann MS, Speake RN (1968) The effects of ethanol on the metabolic activities of the liver. Adv Enzyme Regul 6: 467

    Article  PubMed  Google Scholar 

  • Kübier W (1970) Pharmakokinetische Methoden zur Ermittlung der enteralen Resorption. Z Kinderheilk 108: 187–196

    Article  PubMed  Google Scholar 

  • Lamprecht W, Heinz F (1988) Pyruvate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd English edn. Verlag Chemie, Weinheim, pp 570–577

    Google Scholar 

  • Lenk W, Löhr D, Sonnenbichler J (1989) Pharmacokinetics and biotrans-formation of diethylene glycol and ethylene glycol in the rat. Xeno-biotica 19: 961–979

    Google Scholar 

  • Lloyd MH, Iles RA, Simpson BR, Strunin JM, Cohen RD (1973) The effect of simulated metabolic acidosis on intracellular pH and lactate metabolism in the isolated perfused rat liver. Clin Sci Molec Med 45: 543–549

    Google Scholar 

  • Lossen W, Eichloff R (1905) Über halogenirte Essigsäuren. Liebigs Annalen der Chemie 342: 115–123

    Google Scholar 

  • Peterson CD, Collins AJ, Hirnes JM, Bullock ML, Keane WF (1981) Ethylene glycol poisoning. Pharmacokinetics during therapy with ethanol and hemodialysis. New Engl J Med 304: 21–23

    PubMed  Google Scholar 

  • Popovic V, Popovic P (1960) Permanent cannulation of aorta and vena cava in rats and ground squirrels. J Appl Physiol 15: 727–728

    PubMed  Google Scholar 

  • Ringler DH, Dabich L (1979) Hematology and Clinical Biochemistry. In: Beaker HJ, Lindsey JR, Weisbroth SH (eds) The laboratory rat, vol. I, biology and diseases. Academic Press, New York

    Google Scholar 

  • Rowland M, Tozer TN (1989) Clinical pharmacokinetics: concepts and applications. Lea & Febiger, Philadelphia

    Google Scholar 

  • Schwerd W (1986) Rechtsmedizin. Deutscher Ärzte-Verlag, Köln, 4. Aufl

    Google Scholar 

  • Siggaard Anderson O (1960) A graphic presentation of changes of the acid-base status. Scand J Clin Lab Invest 12: 311–314

    PubMed  Google Scholar 

  • Siggaard Anderson O (1962) The pH-log pco2 blood acid-base nompogram revised. Scand J Clin Lab Invest 14: 598–604

    PubMed  Google Scholar 

  • Thews G, Harnancourt K (1972) Ein Säure-Basen-Nomogramm für die klinische Routinediagnostik. Wiener Med Wochschr 122: 663–665

    Google Scholar 

  • Wiley FH, Hueper WC, Bergen DS, Blood FR (1938) The formation of oxalic acid from ethylene glycol and related solvents. J Ind Hyg Toxicol 20: 269–277

    Google Scholar 

  • Winek CL, Shingleton DP, Shanor SP (1978) Ethylene and diethylene glycol toxicity. Clin Toxicol 13: 297–324

    PubMed  Google Scholar 

  • Young JD, Braun WH, LeBeau JE, Gehring (1976) Saturated metabolism as the mechanism for the dose dependent fate of 1,4-dioxane in rats. Toxicol Appl Pharmacol 37: 138

    Google Scholar 

  • Zarembski PM, Hodgkinson A (1969) Some factors influencing the urinary excretion of oxalic acid in man. Clin Chim Acta 25: 1–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Second communication on the effects of DEG in the rat; first communication, Lenk et al. (1989)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heilmair, R., Lenk, W. & Löhr, D. Toxicokinetics of diethylene glycol (DEG) in the rat. Arch Toxicol 67, 655–666 (1993). https://doi.org/10.1007/BF01973688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01973688

Key words

Navigation