Skip to main content
Log in

Differences in the response of Sprague-Dawley and Lewis rats to bezafibrate: The hypolipidemic effect and the induction of peroxisomal enzymes

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The effects of bezafibrate administered at 10 and 50 mg/kg/day for 7 days to male Sprague-Dawley (SD) and Lewis rats were investigated in order to determine the interrelation between the changes in serum and hepatic lipid contents and activities of selected peroxisomal, microsomal and mitochondrial enzymes in the two rat strains. In both strains, bezafibrate effectively reduced serum and hepatic lipids, increased the liver weight, induced a proliferation of peroxisomes, and selectively elevated the activities of carnitine acetyltransferase and of the enzymes of the peroxisomal Β-oxidation system. Moreover, immunoblotting revealed that the drug specifically enhanced the concentration of only those peroxisomal enzymes involved in fatty acid Β-oxidation. The data obtained demonstrate that although the responses initiated by bezafibrate are qualitatively similar in both strains, they differ in their magnitude in a dose-dependent manner, with the Lewis strain exhibiting a more pronounced response than the SD rats. These results show that dose-dependent strain differences as well as the generally known species differences should be taken into account in pharmacological and toxicological evaluations of fibrates in rodents. Furthermore, generalization and extrapolation from rodent studies should be treated with great caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarsland A, Aarsaether N, Bremer J, Berge RK (1989) Alkylthioacetic acids (3-thia fatty acids) as non Β-oxidizable fatty acid analogues: a new group of hypolipidemic drugs. III. Dissociation of cholesterol and triglyceride-lowering effects and the induction of peroxisomal Β-oxidation. J Lipid Res 30: 1711–1718

    PubMed  Google Scholar 

  • Baudhuin P, Beaufay H, Rahman-Li V, Sellinger OZ, Wattiaux R, Jaques P, De Duve C (1964) Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase,d-amino-acid oxidase and catalase in rat liver tissue. Biochem J 92: 179–184

    PubMed  Google Scholar 

  • Beaufay H, Armar-Costesec A, Feytmans E, Thines-Sempoux D, Wibo M, Robbi M, Berthet J (1974) Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol 61: 188–290

    Article  Google Scholar 

  • Beier K, Völkl A, Hashimoto T, Fahimi HD (1988) Selective induction of peroxisomal enzymes by the hypolipidemic drug bezafibrate. Detection of modulations by automatic image analysis in conjunction with immunoelectron microscopy and immunoblotting. Eur J Cell Biol 46: 383–393

    PubMed  Google Scholar 

  • Berndt J, Gaumert R, Still J (1978) Mode of action of the lipid-lowering agents, clofibrate and BM 15075, on cholesterol biosynthesis in rat liver. Atherosclerosis 30: 147–152

    PubMed  Google Scholar 

  • Bosisio E, Catapano AL, Cighetti G, Paoletti R (1980) Effect of bezafibrate on liver enzymes and lipoproteins in animal experiments. In: Greten H, Lang PD, Schettler G (eds) Lipoproteins and coronary heart disease. Gerhard Witzstrock Publishing House, New York, Baden-Baden, Cologne, FRG, pp 86–91

    Google Scholar 

  • Butler EG, England PJ, Williams GM (1988) Genetic differences in enzymes associated with peroxisome proliferation and hydrogen peroxide metabolism in inbred mouse strains. Carcinogenesis 9: 1459–1463

    PubMed  Google Scholar 

  • Carish D, Oschry Y, Fainaru M, Eisenberg S (1986) Change in very low-, low-, and high-density lipoproteins during lipid-lowering (bezafibrate) therapy; studies in type II A and type II B hyperlipoproteinaemia. Eur J Clin Invest 16: 61–68

    PubMed  Google Scholar 

  • Cooperstein SJ, Lazarow A (1951) A microspectrophotometric method for the determination of cytochrome c oxidase. J Biol Chem 189: 665–670

    PubMed  Google Scholar 

  • De Angelo AB, Daniel FB, McMillan L, Wernsing P, Savage Jr RE (1989) Species and strain sensitivity to the induction of peroxisome proliferation by chloroacetic acids. Toxicol Appl Pharmacol 101: 285–298

    Article  PubMed  Google Scholar 

  • Dwivedi RS, Alvares K, Nemali MR, Subbarao V, Reddy MK, Usman MI, Rademaker AW, Reddy JK, Rao MS (1989) Comparison of the peroxisome proliferator-induced pleitropic response in the liver of nine strains of mice. Toxicol Pathol 17: 16–26

    PubMed  Google Scholar 

  • Eacho PI, Foxworthy PS, Johnson WD, Hoover DM, White SL (1986) Hepatic peroxisomal changes induced by a tetrazole-substituted alkoxyacetophenone in rats and comparison with other species. Toxicol Appl Pharmacol 83: 430–437

    Article  PubMed  Google Scholar 

  • Elcomb CR, Mitchell AM (1986) Peroxisome proliferation due to di-(2-ethylhexyl) phthalate (DEHP): species differences and possible mechanisms. Environ Health Perspect 70: 211–219

    PubMed  Google Scholar 

  • Fahimi HD, Reinicke A, Sujatta M, Yokota S, özel M, Hartig F, Stegmeier K (1982) The short- and long-term effects of bezafibrate in the rat. Ann NY Acad Sci 386: 111–133

    PubMed  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509

    PubMed  Google Scholar 

  • Gariot P, Barrat E, Drouin P, Genton P, Pointel JP, Foliguet B, Kolopp M, Derby G (1987) Morphometric study of human hepatic cell modifications induced by fenofibrate. Metabolism 36: 203–210

    Article  PubMed  Google Scholar 

  • Gray RH, De la Iglesia FA (1984) Quantitative microscopy comparison of peroxisome proliferation by the lipid-regulating agent gemfibrozil in several species. Hepatology 4: 520–530

    PubMed  Google Scholar 

  • Heller F, Harvengt C (1983) Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normolipaemic subjects. Eur J Clin Pharmacol 25: 57–63

    Article  PubMed  Google Scholar 

  • Hertz R, Aurbach R, Hashimoto T, Bar-Tana J (1991) Thyromimetic effect of peroxisomal proliferators in rat liver. Biochem J 274: 745–751

    PubMed  Google Scholar 

  • Issemann J, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650

    Article  PubMed  Google Scholar 

  • Klose G, Behrendt J, Vollmar J, Greten H (1980) Effect of bezafibrate on the activity of lipoprotein lipase and hepatic triglyceride hydrolase in healthy volunteers. In: Greten H, Lang PD, Schettler G (eds) Lipoproteins and coronary heart disease. Gerhard Witzstrock Publishing House, New York, Baden-Baden, Cologne, FRG, pp 182–184

    Google Scholar 

  • Lake BG, Evans JG, Gray TJB, Korosi SA, North CJ (1989) Comparative studies on nafenopin-induced hepatic peroxisome-proliferation in the rat, Syrian hamster, guinea pig and marmoset. Toxicol Appl Pharmacol 99: 148–160

    Article  PubMed  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73: 2043–2046

    PubMed  Google Scholar 

  • Lazarow PB, Shio H, Leroy-Houyet MA (1982) Specificity in the action of hypolipidemic drugs: increase of peroxisomal Β-oxidation largely dissociated from hepatomegaly and peroxisome proliferation in the rat. J Lipid Res 23: 317–326

    PubMed  Google Scholar 

  • Leighton F, Coloma L, Koenig C (1975) Structure, composition, physical properties and turnover of proliferated peroxisomes. A study on the tropic effects of SU-13 437 on rat liver. J Cell Biol 67: 281–309

    Article  PubMed  Google Scholar 

  • Lock EA, Mitchell AM, Elcombe CR (1989) Biochemical mechanism of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol 29: 145–163

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  Google Scholar 

  • Lundgren B, De Pierre JW (1989) Proliferation of peroxisomes and induction of cytosolic and microsomal epoxide hydrolases in different strains of mice and rats after dietary treatment with clofibrate. Xenobiotica 8: 867–881

    Google Scholar 

  • Makowska JM, Anders Ch, Goldfarb PS, Bonner F, Gibson GG (1990) Characterization of the hepatic responses to the short-term administration of ciprofibrate in several rat strains. Biochem Pharmacol 40: 1083–1093

    Article  PubMed  Google Scholar 

  • Marquis NR, Fritz JB (1965) The distribution of carnitine, acetylcarnitine and carnitine acetyltransferase in rat tissue. J Biol Chem 240: 2193–2196

    PubMed  Google Scholar 

  • Oesch F, Hartmann R, Timms C, Strolin-Bendetti M, Dostert P, Wörner W, Schladt L (1988) Time-dependence and differential induction of rat and guinea pig peroxisomal Β-oxidation, palmitoyl-CoA hydrolase, cytosolic and microsomal epoxide hydrolase after treatment with hypolipidemic drugs. J Cancer Res Clin Oncol 114: 341–346

    PubMed  Google Scholar 

  • Olsson AG, Rössner S, Walldius G, Carlson LA, Lang PD (1977) Effect of BM 15.075 on lipoprotein concentrations in different types of hyperlipoproteinaemia. Atherosclerosis 27: 279–287

    PubMed  Google Scholar 

  • Pill J, Wolff S, Stegmeier K, Schmidt F (1988) Effect of bezafibrate on serum lipids in normo- and spontaneously hyperlipidemic rats. Methods Find Exp Clin Pharmacol 10: 487–492

    PubMed  Google Scholar 

  • Pill J, Maier M, Völkl A, Hartig F, Stegmeier K, Schmidt FH, Fahimi HD (1989) Serumlipide und Peroxisomen-Proliferation bei verschiedenen Tierspezies: Wirkung von Bezafibrat and BM 13.0907. Aktuel Endokrinol Stoffwechsel 10: 271

    Google Scholar 

  • Priest DG, Pitts OM (1972) Reaction intermediate effects on the spectrophotometric uricase assay. Anal Biochem 50: 195–205

    Article  PubMed  Google Scholar 

  • Reddy JK, Lalwani ND (1983) Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidaemic drugs and industrial plasticisers to humans. CRC Crit Rev Toxicol 12: 1–58

    Google Scholar 

  • Reddy JK, Goel SK, Nemali MR, Carrino JJ, Laffler TG, Reddy MK, Sperbeck SJ, Osumi T, Hashimoto T, Lalwani ND, Rao MS (1986) Transcriptional regulation of peroxisomal fatty-acyl-CoA oxidase and enoyl-CoA hydratase — hydroxy-acyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci USA 83: 1747–1751

    PubMed  Google Scholar 

  • Rodricks JV, Turnbull D (1987) Interspecies differences in peroxisomes and peroxisome proliferation. Toxicol Ind Health 3: 197–212

    PubMed  Google Scholar 

  • Schmidt FH, Dahl K (1968) Zur Methode der enzymatischen Neutralfett-Bestimmung in biologischem Material. Z Klin Chem 6: 156–159

    Google Scholar 

  • Sharma R, Lake BG, Foster J, Gibson GG (1988) Microsomal cytochrome P-452 induction and peroxisome proliferation by hypolipidaemic agents in rat liver. A mechanistic interrelationship. Biochem Pharmacol 37: 1193–1201

    Article  PubMed  Google Scholar 

  • Siedel J, Schlumberger H, Klose S, Ziegenhorn J, Wahlefeld AW (1981) Improved reagent for the enzymatic determination of serum cholesterol. J Clin Chem Biochem 19: 838–839

    Google Scholar 

  • Stegmeier K, Stork H, Lenz H, Leuschner F, Liede V (1980) Pharmacology and mode of action of bezafibrate in animals. In: Greten H, Lang PD, Schettler G (eds) Lipoproteins and coronary heart disease. Gerhard Witzstrock Publishing House, New York, Baden-Baden, Cologne, FRG, pp 76–82

    Google Scholar 

  • Stewart JM, Packard CJ, Lorimer AR, Boag DE, Shepherd J (1982) Effects of bezafibrate on receptor mediated and receptor independent low-density lipoprotein catabolism in type II hyperlipoproteinaemic subjects. Atherosclerosis 44: 355–365

    PubMed  Google Scholar 

  • Thomas H, Schladt L, Knehr M, Post K, Oesch F, Boiteux-Antonine AF, Fournel-Gigleux S, Magdalou J, Siest G (1989) Effect of hypolipidemic compounds on lauric acid hydroxylation and phase II enzymes. Biochem Pharmacol 38: 1963–1969

    Article  PubMed  Google Scholar 

  • Usuda N, Reddy MK, Hashimoto T, Rao MS, Reddy JK (1988) Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes. Lab Invest 58: 100–111

    PubMed  Google Scholar 

  • Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149: 257–265

    Article  PubMed  Google Scholar 

  • Wahlefeld AW (1974) Triglyceride: Bestimmung nach enzymatischer Verseifung. In: Bergmeier HU (ed) Methoden der enzymatischen Analyse, 3. Ed. Verlag Chemie, Weinheim, FRG, pp 1878–1882

    Google Scholar 

  • Zilversmit DB, Davis AK, Davis PD (1950) Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J Lab Clin Med 35: 155–160

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pill, J., Völkl, A., Hartig, F. et al. Differences in the response of Sprague-Dawley and Lewis rats to bezafibrate: The hypolipidemic effect and the induction of peroxisomal enzymes. Arch Toxicol 66, 327–333 (1992). https://doi.org/10.1007/BF01973627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01973627

Key words

Navigation