Skip to main content
Log in

Determination of urinary glutathione S-transferase and lactate dehydrogenase for differentiation between proximal and distal nephron damage

  • Original Articles
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cytosolic glutathione S-transferase (GST) activity is confined to the proximal convoluted and straight tubules. Damage to these parts of the nephron should result in leakage of GST into the urinary space. Lactate dehydrogenase (LHD), in contrast, is more generally distributed along the nephron. Measurement of both enzyme activities could therefore be expected to discriminate between different localizations of nephrotoxicity. To test this hypothesis, we determined both enzyme activities in 24 h urine samples from 10–12 female Sprague-Dawley rats, each treated with single i. p. injections of puromycin aminonucleoside (PAN, 130 mg/kg), Na2 CrO4 10, 20, 30 mg/kg), mercuric chloride (HgCl2, 0.5, 0.75, 1.0 mg/kg), folic acid (125, 350, 375 mg/kg), ethyleneimine (0.5, 2.0, 5.0 μl/kg). Bovine serum albumin (BSA) was injected by the same method, twice daily on 3 consecutive days (2.5, 7.14 g/kg). The results obtained indicate a characteristic dose- and time-dependent pattern of excreted enzyme activities for each of the tested compounds. In both models with primarily glomerular damage, proximal tubular parts were also affected, as could be demonstrated by increased urinary GST and histopathological changes. Damage, mainly to the S1/S2 segment by 20 or 30 mg Na2 CrO4/kg, resulted in moderate to marked increases in LDH excretion, while GST was only moderately elevated at 30 mg/kg. Extreme increases in GST and LDH output were measured after predominant S3 segment damage after 0.75 and 1.0 mg HgCl2/kg. The distally active compounds, folic acid and ethyleneimine, did not increase GST excretion at lower doses. At the high doses, a small rise in GST excretion indicated some, probably secondary, proximal tubular involvement, which correlated with the histopathological findings in these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FDP:

fructose-1,6-diphosphatase

NAG:

N-acetyl-β-d-glucosaminidase

PK:

pyruvate kinase

GST:

glutathione S-transferase

LDH:

lactate dehydrogenase

ALP:

alkaline phosphatase

ACP:

acid phosphatase

LAP:

leucine aminopeptidase

GGT:

gamma-glutamyltransferase

AST:

aspartate aminotransferase

GAL:

β-D-galactosidase

ASA:

arylsulfatase A

PHI:

phosphohexoseisomerase

LAS:

leucine arylamidase

GlDH:

glutamate dehydrogenase

PAN:

puromycin aminonucleoside

BSA:

bovine serum albumin

s. c.:

subcutaneous

i. p.:

intraperitoneal

i. v.:

intravenous

p. i.:

post injection

References

  • Abe H, Shibuya T, Odoshima S, Arichi S, Nagase S (1988) Alterations in the glomerulus in aminonucleoside nephrosis in analbuminemic rats. Nephron 50: 351–355

    PubMed  Google Scholar 

  • Anderson SM, Recant L (1962) Fine structural alterations in the rat kidney following intraperitoneal bovine albumin. Am J Pathol 40: 555–569

    PubMed  Google Scholar 

  • Bach PH, Gregg NJ (1988) Experimentally induced renal papillary necrosis and upper urothelial carcinoma. Int Rev Exp Pathol 30: 1–54

    PubMed  Google Scholar 

  • Bass NM, Kirsch RE, Tuff SA, Campbell JA, Saunders JS (1979) Radioimmunoassay measurement of urinary ligandin excretion in nephrotoxin-treated rats. Clin Sci 56: 419–426

    PubMed  Google Scholar 

  • Bhargava AS, Khater AR, Guenzel P (1978) The correlation between lactate dehydrogenase activity in urine and serum and experimental renal damage. Toxicol Lett 1: 319–323

    Google Scholar 

  • Bomhard E, Maruhn D (1988) Effects of puromycin aminonucleoside on ten urinary enzymes in rats. Arch Toxicol Suppl 12: 158–161

    Google Scholar 

  • Bomhard E, Maruhn D, Paar D, Wehling K (1984) Urinary enzyme measurements as sensitive indicators of chronic cadmium nephropathy. In: Bianchi C, Bertelli A, Duarte E (eds) Kidney, small proteins and drugs. Contributions to nephrology. Karger, Basel, Vol. 42, pp 142–147

  • Bomhard E, Maruhn D, Vogel O (1986) Comparative investigations on the effects of acute intraperitoneal cadmium, chromium and mercury exposure on the kidney. Uremia Invest 9: 131–136

    Google Scholar 

  • Brade W, Herken H, Merker HJ (1969) Schaedigung und Regeneration renaler Tubuluszellen nach Folsaeuregabe. Naunyn-Schmiedebergs Arch Pharmacol 262: 228–250

    Google Scholar 

  • Byrnes KA, Ghidoni JJ, Suzuki M, Thomas H, Mayfield ED (1972) Response of the rat kidney to folic acid administration. Lab Invest 26: 191–200

    PubMed  Google Scholar 

  • Campbell JAH, Bass NM, Kirsch RE (1980) Immunohistological localization of ligandin in human tissues. Cancer 45: 503–510

    PubMed  Google Scholar 

  • Chasseaud LF (1979) The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res 29: 175–274

    PubMed  Google Scholar 

  • Davies D, Brewer DB, Hardwicke J (1978) Urinary proteins and glomerular morphometry in protein overload proteinuria. Lab Invest 38: 232–243

    PubMed  Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Statist Assoc 50: 1096–1121

    Google Scholar 

  • Ellis BG, Price RG (1973) The effect of papillary damage by ethyleneimine on kidney function and some urinary enzymes in the dog. Chem Biol Interact 7: 131–142

    PubMed  Google Scholar 

  • Ellis BG, Price RG (1975) Urinary enzyme excretion during renal papillary necrosis induced in rats with ethyleneimine. Chem Biol Interact 11: 473–482

    PubMed  Google Scholar 

  • Emanuelli G, Cestonaro G, Anfossi G, Calcamuggi G, Gatti G, Marcarino C (1982) Urinary enzyme excretion and renal dehydrogenase isoenzyme pattern in acute HgCl2 nephropathy of rat. Enzyme 27: 89–98

    PubMed  Google Scholar 

  • Evan AP, Dail WG (1974) The effects of sodium chromate on the proximal tubules of the rat kidney. Lab Invest 30: 704–715

    PubMed  Google Scholar 

  • Feinfeld DA, Fuh VL (1986) Urinary glutathione-S-transferase in cisplatin nephrotoxicity in rats. J Clin Chem Clin Biochem 24: 529–532

    PubMed  Google Scholar 

  • Feinfeld DA, Fleischner G, Goldstein EJ, Arias IM, Bourgoignie JJ (1975) Selective ligandinuria in rats with acute renal failure. Clin Res 23: 361

    Google Scholar 

  • Feinfeld DA, Bourgoignie JJ, Fleischner G, Goldstein EJ, Biempica L, Arias IM (1977) Ligandinuria in nephrotoxic acute tubular necrosis. Kidney Int 12: 387–392

    PubMed  Google Scholar 

  • Feinfeld DA, Fleischner GM, Goldstein EJ, Levine RD, Levine SD, Avram MM, Arias IM (1979) Ligandinuria: an indication of tubular cell necrosis. Curr Probl Clin Biochem 9: 273–278

    PubMed  Google Scholar 

  • Feinfeld DA, Fleischner GM, Arias IM (1981) Urinary ligandin and glutathione-S-transferase in gentamycin-induced nephrotoxicity in the rat. Clin Sci 61: 123–125

    PubMed  Google Scholar 

  • Feinfeld DA, Sherman RA, Safirstein R, Ohmi N, Fuh VL, Arias IM, Levine SD (1984) Urinary ligandin in renal tubular cell injury. In: Bianchi C, Bertelli A, Duarte E (eds) Kidney, small proteins and drugs. Contributions to nephrology. Karger, Basel, Vol. 42, pp 111–117

  • Feinfeld DA, Safirstein R, Anderson H, Johnson R, Hardy M, Benvenisty A und D'Agati V (1989) Urine glutathione S-transferase associated with nephrotoxic drugs. In: Bach PH, Lock EA (eds) Nephrotoxicity: extrapolation from in vitro to in vivo and from animals to man. Plenum Press, London, pp 705–710

    Google Scholar 

  • Fiegelson EB, Drake JW, Recant L (1957) Experimental aminonucleoside nephrosis in rats. J Lab Clin Med 50: 437–446

    PubMed  Google Scholar 

  • Fine LG, Goldstein EJ, Arias IM (1975) Localization of glutathione transferase activity in the rabbit nephron using isolated segments. Kidney Int 8: 474 (Abstr)

    Google Scholar 

  • Fine LG, Goldstein EJ, Trizna W, Rozmaryn L, Arias IM (1978) Glutathione-S-transferase activity in the rabbit nephron: segmental localization in isolated tubules and formation of thiol adducts of ethacrynic acid. Proc Soc Exp Biol Med 157: 189–193

    PubMed  Google Scholar 

  • Fisher ER, Gruhn J (1958) Aminonucleoside nephrosis in rats. AMA Arch Pathol 65: 545–553

    PubMed  Google Scholar 

  • Fisher ER, Hellstrom HR (1962) Mechanisms of proteinuria: functional and ultrastructural correlation of effects of infusion of homologous and heterologous protein (bovine serum albumin) in the rat. Lab Invest 11: 617–637

    PubMed  Google Scholar 

  • Fleischner GM, Kamisaka K, Gatmaitan Z, Arias IM (1976) Immunologic studies of rat and human ligandin. In: Arias IM, Jakoby WB (eds) Glutathione: metabolism and function. Raven Press, New York, pp 259–265

    Google Scholar 

  • Franchini I, Mutti A, Cavatorta A, Corradi A, Cosi A, Olivetti G, Borghetti A (1978) Nephrotoxicity of chromium. Contrib Nephrol 10: 98–110

    PubMed  Google Scholar 

  • Frenk S, Antonowicz I, Craig JM, Metcoff J (1955) Experimental nephrotic syndrome induced in rats by aminonucleoside. Renal lesions and body electrolyte composition. Proc Soc Exp Biol Med 89: 424–427

    PubMed  Google Scholar 

  • Goldstein EJ, Feinfeld EA, Fleischner GM, Elkien M (1976) Enzymatic evidence of renal tubular damage following renal angiography. Radiology 121: 617–619

    PubMed  Google Scholar 

  • Grégoire F (1971) Kidney enzyme changes in experimental proteinuria. Lab Invest 25: 626–634

    PubMed  Google Scholar 

  • Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26: 101–111

    PubMed  Google Scholar 

  • Gumbleton M, Nicholls PJ (1988) Dose-response and time-response biochemical and histological study of potassium dichromate-induced nephrotoxicity in the rat. Fd Chem Toxicol 26: 37–44

    Google Scholar 

  • Habig WH, Papst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–7139

    PubMed  Google Scholar 

  • Hales BF, Jaeger V, Neims AH (1978) Isoelectric focusing of glutathione S-transferases from rat liver and kidney. Biochem J 175: 937–943

    PubMed  Google Scholar 

  • Halman J, Fowler JSL, Price RG (1985) Urinary enzymes, proteinuria and renal function tests in the assessment of nephrotoxicity in the rat. In: Bach PH, Lock EA (eds) Renal heterogeneity and target cell toxicity. J. Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp 295–298

    Google Scholar 

  • Harrison DJ, Kharbanda R, Cunningham DS, McLellan LI, Haves JD (1989) Distribution of glutathione S-transferase isoenzymes in human kidney: basis for possible markes of renal injury. J Clin Pathol 42: 624–628

    PubMed  Google Scholar 

  • Howie AJ, Kizaki T, Beaman M, Morland CM, Birtwistle RJ, Adu D, Michael J, Williams AJ, Walls J, Matsuyama M, Shimizu F (1989) Different types of segmental sclerosing glomerular lesions in six experimental models of proteinuria. J Pathol 157: 141–151

    PubMed  Google Scholar 

  • Hsueh W, Rostorfer HH (1973) Chemically induced renal hypertrophy in the rat. Lab Invest 29: 547–555

    PubMed  Google Scholar 

  • Jakoby WB (1978) The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol 46: 383–414

    PubMed  Google Scholar 

  • Kaplowitz N (1980) Physiological significance of glutathione S-transferases. Am J Physiol 239: G 439-G 444

    Google Scholar 

  • Klingler EL, Andrew PE, Anderson RE (1980) Folic acid-induced renal injury and repair. Arch Pathol Lab Med 104: 87–93

    PubMed  Google Scholar 

  • Kotanko P, Gstraunthaler G, Pfaller W (1984) Harnenzyme zur nichtinvasiven Diagnostik von Nierenepithelschaeden im akuten Nierenversagen. Wien Klin Wschr 96: 625–629

    PubMed  Google Scholar 

  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jornvall H (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 82: 7202–7206

    PubMed  Google Scholar 

  • Maruhn D (1979) Preparation of urine for enzyme determinations by gel filtration. Curr Probl Clin Biochem 9: 22–30

    PubMed  Google Scholar 

  • Maruhn D, Paar D, Hartmann HG, Bock KD, Bomhard E, Lorke D (1981) Enzyme patterns of rat urine in folate-induced acute renal failure. In: Brown SS, Davies DS (eds) Organ-directed toxicity, chemical indices and mechanisms. Pergamon Press, Oxford, New York, pp 69–73

    Google Scholar 

  • Maruhn D, Paar D, Bomhard E (1983a) Diagnostic sensitivity of urinary enzymes in experimental kidney damage in the rat. In: Galteau MM, Siest G, Henny J (eds) Biologie prospective; Comptes Rendus du 5e Colloque International de Pont-a-Mousson, Masson, Paris, pp 943–945

    Google Scholar 

  • Maruhn D, Paar D, Hartmann HG, Bock KD, Bomhard E, Lorke D (1983b) Urinary enzyme excretion in protein overload proteinuria In: Goldberg DM, Werner M (eds) Progress in clinical enzymology, Vol. 2. Masson, New York, pp 273–276

    Google Scholar 

  • Maruhn D, Paar D, Bomhard E (1984) Urine enzyme patterns in the rat after damage to different parts of the nephron. In: Goldberg DM, Werner M (eds) Selected topics in clinical enzymology. Walter de Gruyter & Co, Berlin, New York, pp 429–434

    Google Scholar 

  • Meister A (1974) Glutathione, metabolism and function via the gammaglutamyl cycle. Life Sci 15: 177–190

    PubMed  Google Scholar 

  • Paar D, Maruhn D, Bock KD, Bomhard E, Lorke D (1982a) Urokinase excretion after experimentally induced renal failure in the rat by folic acid. In: Mannucci PM, D'Angelo A (eds) Urokinase: basic and clinical aspects. Academic Press, London, New York, pp 85–89

    Google Scholar 

  • Paar D, Maruhn D, Loegering HJ, Bomhard E (1982b) Kallikrein- und Urokinaseausscheidung im Harn der Ratte nach experimenteller Nierenschaedigung durch Folsaeure. In: van de Loo J, Asbeck F (eds) Haemostase, Thrombophilic and Arteriosklerose. Schattauer Verlag, Stuttgart, New York, pp 794–797

    Google Scholar 

  • Price RG, Ellis BG (1976) Urinary enzyme excretion in aminonucleoside nephrosis in rats. Chem Biol Interact 13: 353–358

    PubMed  Google Scholar 

  • Recommendations of the German Society of Clinical Chemistry (Empfehlungen der Deutschen Gesellschaft fuer Klinische Chemie) (1972) Z Klin Chem Klin Biochem 10: 182–192

    Google Scholar 

  • Schmidt U, Dubach UC (1976) Acute renal failure in the folate-treated rat: early metabolic changes in various structures of the nephron. Kidney Int 10: 39–45

    Google Scholar 

  • Schmidt U, Torhorst J, Huguenin M, Dubach UC (1973) Acute renal failure after folate: Na-K-ATPase in isolated rat renal tubule. Ultramicrochemical and clinical studies. Eur J Clin Invest 3: 169–178

    PubMed  Google Scholar 

  • Schmidt U, Schlumpf V, Joesch W, Dubach UC (1974) Acute renal failure in the rat after folate intoxication: diagnostic value of lactate dehydrogenase and alkaline phosphatase measurements in serum and urine. Clin Nephrol 2: 106–112

    PubMed  Google Scholar 

  • Schubert GE (1976) Folic acid-induced acute renal failure in the rat: morphological studies. Kidney Int 10: 46–50

    PubMed  Google Scholar 

  • Spors S (1971) Elektronenmikroskopische Untersuchungen der Membran-Phosphatasen und der Lysosomen im proximalen Tubulus der Rattenniere nach Folsaeuregabe. Virchows Arch Zellpathol 9: 198–205

    Google Scholar 

  • Stonard MD, Gore CW, Oliver GJA, Smith IK (1987) Urinary enzymes and protein patterns as indicator of injury to different regions of the kidney. Fundam Appl Toxicol 9: 339–351

    PubMed  Google Scholar 

  • Stroo WE, Hook JB (1977) Enzymes of renal origin in urine as indicators of nephrotoxicity. Toxicol Appl Pharmacol 39: 423–434

    PubMed  Google Scholar 

  • Tandon SK, Magos L, Cabral JPR (1980) Protection against mercuric chloride by nephrotoxic agents which do not induce thionein. Toxicol Appl Pharmacol 52: 227–236

    PubMed  Google Scholar 

  • Wilson SGF, Hackel DB, Horwood S, Nash G, Heyman W (1958) Aminonucleoside nephrosis in rats. Pediatrics 21: 963–973

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr D. Lorke on the occasion of his 70th birthday

Parts of the results have been presented at the Fourth International Nephrotoxicity Symposium in Guildford, 1989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomhard, E., Maruhn, D., Vogel, O. et al. Determination of urinary glutathione S-transferase and lactate dehydrogenase for differentiation between proximal and distal nephron damage. Arch Toxicol 64, 269–278 (1990). https://doi.org/10.1007/BF01972986

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01972986

Key words

Navigation