Advertisement

Agents and Actions

, Volume 22, Issue 1–2, pp 1–15 | Cite as

Aspects of histamine metabolism

  • J. P. Green
  • G. D. Prell
  • J. K. Khandelwal
  • P. Blandina
Histamine and Kinins Review

Conclusions

Progress in learning the role of histamine in physiology and pathology has been impeded by difficulties in accurately measuring histamine and by the deficiencies of methods to measure its metabolites. The availability of specific, sensitive and rapid methods to measure histamine has helped in understanding the role of histamine in disease. Measuring histamine alone may provide an incomplete indication of the role of histamine in disease or in any other process. For histamine is metabolized by multiple pathways, and the kinetics of these enzymatic activities (as well as the rate of synthesis of histamine) determine the steady-state levels of histamine in tissue and in body fluids. Measurements of both histamine and its metabolites would contribute, and may be essential, to the understanding of the role of histamine in disease, just as measurements of the metabolites of other biogenic amines have been critical to understanding of their roles in diseases. Yet another reason that compels measurements of metabolites is evidence that some of the metabolites of histamine are pharmacologically, perhaps physiologically, active.

Keywords

Enzymatic Activity Histamine Body Fluid Biogenic Amine Rapid Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. D., and P. M. Hudgins,Characteristics of histamine disposition in vascular smooth muscle. Pharmacology14, 330–338 (1976).PubMedGoogle Scholar
  2. Agius, R. M., R. C. Godfrey and S. T. Holgate,Mast cell and histamine content of human bronchoalveolar lavage fluid. Thorax40, 760–767 (1985).PubMedGoogle Scholar
  3. Alivisatos, S. G. A.,Histamine-pyridine coenzyme interactions. Handb. Exper. Pharmacol.18/1, 726–733 (1966).Google Scholar
  4. Arrang, J.-M., M. Garbarg, and J.-C. Schwartz,Autoregulation of histamine release in brain by presynaptic H 3-receptors. Neuroscience15, 553–562 (1985).CrossRefPubMedGoogle Scholar
  5. Aures, D., R. Hakanson, and W. G. Clark,Histidine decarboxylase and DOPA decarboxylase. Handb. Neurochem.4, 165–196 (1970).Google Scholar
  6. Aziz, A. A.,Histamine inactivation in rat-kidney slices. Biochem. J.80, 50 P (1961).Google Scholar
  7. Barger, G., and H. H. Dale,β-Iminazolylethylamine: a depressor constituent of intestinal mucosa. J. Physiol. (London)41, 499–503 (1911).Google Scholar
  8. Barker, L. A., and B. J. Ebersole,Histamine H 2-receptors on guinea-pig ileum myenteric plexus neurones mediate the release of contractile agents. J. Pharmacol. Exp. Ther.221, 69–75 (1982).PubMedGoogle Scholar
  9. Beaven, M. A.,Factors regulating availability of histamine at tissue receptors, In:Pharmacology of Histamine Receptors. (Eds Ganellin, C. R., and Parsons, M. E.) pp. 103–145, Wright, Bristol (1982).Google Scholar
  10. Berg, B., G. Granerus, H. Westling and T. White,Urinary excretion of histamine and histamine metabolites in leukaemia. Scand. J. Haemat.8, 63–68 (1971).PubMedGoogle Scholar
  11. Bergmark, J., and G. Granerus,Ion exchange chromatography for quantitative analysis of radioactive histamine metabolites in human urine. Scand. J. Clin. Lab. Invest.34, 365–373 (1974).PubMedGoogle Scholar
  12. Blandina, P., S. Maayani and J. P. Green,Interaction of telemethylimidazoleacetic acid with benzodiazepine binding sites in rat brain membranes. Abs. Soc. Neurosci.11, 263 (1985).Google Scholar
  13. Brown, D. D., R. Tomchick and J. Axelrod,The distribution and properties of a histamine-methylating enzyme. J. Biol. Chem.234, 2948–2950 (1959).PubMedGoogle Scholar
  14. Brown, D. D., O. L. Silva, P. B. McDonald, S. H. Snyder and M. W. Kies,The mammalian metabolism of l-histidine. J. Biol. Chem.235, 154–159 (1960).PubMedGoogle Scholar
  15. Carlini, E. A., and J. P. Green,The subcellular distribution of histamine, slow-reacting substance and 5-hydroxytryptamine in the brain of the rat. Br. J. Pharmacol.20, 264–277 (1963).Google Scholar
  16. Code, C. F.,Histamine — whither now? Can. J. Physiol. Pharmacol.63, 746–750 (1985).PubMedGoogle Scholar
  17. Code, C. F., W. E. R. Green, J. C. Kennedy, H. D. Ritchie and J. F. Schlegel,Metabolism of histamine in secreting intact and isolated canine stomach. Am. J. Physiol.230, 219–227 (1976).PubMedGoogle Scholar
  18. Dale, H. H.,Croonian lectures on some chemical factors in the control of the circulation. Lancet1, 1285–1290 (1929).Google Scholar
  19. Dale, H. H.,Forward. Handb. Exper. Pharmacol. 18/I, XXVI-XXXV (1966).Google Scholar
  20. Dale, H. H., and P. P. Laidlaw,The physiological action of β-iminazolylethylamine. J. Physiol. (London)41, 318–344 (1910).Google Scholar
  21. Dale, H. H., and P. P. Laidlaw,Further observation on the action of β-iminazolyethylamine. J. Physiol. (London)43, 182–195 (1911).Google Scholar
  22. Day, M., and J. P. Green,The uptake of biogenic amines by neoplastic mast cells in culture. J. Physiol. (London)164, 227–237 (1962a).Google Scholar
  23. Day, M., and J. P. Green,The uptake of amino acids and the synthesis of amines by neoplastic mast cells in culture. J. Physiol. (London)164, 210–226 (1962b).Google Scholar
  24. Day, M., and J. P. Green,Differences in the turnover of endogenous and exogenous 5-hydroxytryptophan, 5-hydroxytryptamine, and histamine in neoplastic mast cells in culture. Biochem. Pharmacol.11, 1043–1048 (1962c).CrossRefPubMedGoogle Scholar
  25. Di Paolo, T., C. Rouillard and P. Bedard,17β-Estradiol at a physiological dose acutely increases dopamine turnover in rat brain. Eur. J. Pharmacol.117, 197–203 (1985).CrossRefPubMedGoogle Scholar
  26. Doenicke, A., and W. Lorenz,Histamine release in anaesthesia and surgery. Premedication with H 1-and H 2-receptor antagonists: Indications, benefits and possible problems. Klin. Wochenschr.60, 1039–1045 (1982).CrossRefPubMedGoogle Scholar
  27. Eliassen, K. A.,Metabolism of 14 C-histamine in domestic animals. I. Goat. Acta Physiol. Scand.76, 172–181 (1969).Google Scholar
  28. Ende, N., Y. Katayama and J. V. Auditore,Multiple proteolytic enzymes in the human mast cells. Nature201, 1197–1198 (1964).PubMedGoogle Scholar
  29. Endo, Y.,Elevation of histamine levels in rat and mouse tissues by the deacetylation of administered N-acetylhistamine. Eur. J. Pharmacol.60, 299–305 (1979).CrossRefPubMedGoogle Scholar
  30. Ferrari, F., and G. Baggio,Influence of cimetidine, ranitidine and imidazole on the behavioral effects of (±) N-n-propylnorapomorphine in male rats. Psychopharmacology85, 197–200 (1985).CrossRefPubMedGoogle Scholar
  31. Fesus, L., E. F. Szucs, K. E. Barrett, D. D. Metcalfe and J. E. Folk,Activation of transglutaminase and production of proteine-bound γ-glutamylhistamine in stimulated mouse mast cells. J. Biol. Chem.260, 13771–13778 (1985).PubMedGoogle Scholar
  32. Fram, D. H., and J. P. Green,The presence and measurement of methylhistamine in urine. J. Biol. Chem.240, 2036–2042 (1965).PubMedGoogle Scholar
  33. Furano, A. V., and J. P. Green,Differences in the disposition of endogenous and exogenous substances by cells. Nature199, 380–381 (1963).PubMedGoogle Scholar
  34. Furano, A. V., and J. P. Green,The uptake of biogenic amines by mast cells of the rat. J. Physiol. (London)170, 263–271 (1964a).Google Scholar
  35. Furano, A. V., and J. P. Green,The compartmentation and elimination of 14 C-histamine by neoplastic mast cells in culture. Biochem. Biophys. Acta86, 596–603 (1964b).PubMedGoogle Scholar
  36. Ginsburg, M., I. Wajda and H. Waelsch,Transglutaminase and histamine incorporation in vivo. Biochem. Pharmacol.12, 251–264 (1963).CrossRefPubMedGoogle Scholar
  37. Gitlow, S. E., M. Mendlowitz, E. Kruk and S. Khassis,Diagnosis of pheochromocytoma by assay of catecholamine metabolites. Circ. Res.9, 746–754 (1961).Google Scholar
  38. Granerus, G.,Urinary excretion of histamine, methylhistamine and methylimidazoleacetic acids in man under standardized dietary conditions. Scand. J. Clin. Lab. Invest.22, (Suppl. 104), 59–68 (1968).Google Scholar
  39. Green, J. P.,The uptake of 5-hydroxytyptamine, histamine and their amino acid precursors by neoplastic mast cells. Yale J. Biol. Med.39, 21–26 (1966).PubMedGoogle Scholar
  40. Green, J. P.,A new neoplastic mast cell grown in culture. Eur. J. Pharmacol.3, 68–73 (1968).CrossRefPubMedGoogle Scholar
  41. Green, J. P.,Histamine. Handb. Neurochem.4, 221–250 (1970).Google Scholar
  42. Green, J. P.,Histamine receptors in brain. Handb. Psychopharmacol.17, 385–420 (1983).Google Scholar
  43. Green, J. P., and A. V. Furano,Two pools for amines in neoplastic mast cells. Biochem. Pharmacol.11, 1049–1053 (1962).CrossRefPubMedGoogle Scholar
  44. Green, J. P., D. H. Fram and N. Kase,Methylhistamine and histamine in the urine of women during the elaboration of oestrogen. Nature204, 1165–1168 (1964).PubMedGoogle Scholar
  45. Haas, R., P. C. Heinrich and D. Sasse,Proteolytic enzymes of rat liver mitochondria. Evidence for a mast cell origin. FEBS Lett.103, 168–171 (1979).CrossRefPubMedGoogle Scholar
  46. Haimart, M., J. M. Launay, G. Zurcher, N. Cauet, C. Dreux and M. Da Prada,Simultaneous determination of histamine and N α-methylhistamine in biological samples by an improved enzymatic single isotope assay. Agents Actions16, 71–75 (1985).PubMedGoogle Scholar
  47. Harle, D. G., B. A. Baldo and M. M. Fisher,Inhibition of histamine-N-methyltransferase activity by neuromsucular blocking drugs. Agents Actions17, 27–31 (1985).PubMedGoogle Scholar
  48. Hegstrand, L. R., and R. J. Hine,Measurement of brain histamine: A reapparaisal. Neurochem. Res.10, 307–314 (1985).CrossRefPubMedGoogle Scholar
  49. Hegstrand, L. R., and T. H. Kalinke,Properties of N-acetylhistamine deacetylase in mammalian brain. J. Neurochem.45, 300–307 (1985).PubMedGoogle Scholar
  50. Herdon, H., J. Strupish and S. R. Nahorski,Differences between the release of radiolabelled and endogenous dopamine from superfused rat brain slices: Effects of depolarizing stimuli, amphetamine and synthesis inhibition. Brain Res.348, 309–320 (1985).CrossRefPubMedGoogle Scholar
  51. Herman, K. S., R. R. Bowsher, and D. P. Henry,Synthesis of N π-methylhistamine and N α-methylhistamine by purified rabbit lung indolethylamine N-methyltransferase. J. Biol. Chem.260, 12336–12340 (1985).PubMedGoogle Scholar
  52. Holcslaw, T., C. Wilson and G. Nichols,Histamine uptake and metabolism in the blood vessels of rats. Agents Actions15, 202–210 (1984).PubMedGoogle Scholar
  53. Hough, L. B., and J. P. Green,Histamine and its receptors in the nervous system. Handb. Neurochem.6, 145–211 (1984).Google Scholar
  54. Hough, L. B., P. L. Stetson and E. F. Domino,Gas chromatography-mass spectrometric characteristics and assay of tele-methylhistamine. Anal. Biochem.96, 56–63 (1979).CrossRefPubMedGoogle Scholar
  55. Hough, L. B., J. K. Khandelwal, A. M. Morrishow and J. P. Green,An improved GCMS method to measure tele-methylhistamine. J. Pharmacol. Methods5, 143–148 (1981).CrossRefPubMedGoogle Scholar
  56. Hough, L. B., J. K. Khandelwal and J. P. Green,Histamine turnover in regions of rat brain. Brain Res.291, 103–109 (1984).CrossRefPubMedGoogle Scholar
  57. Hough, L. B., J. K. Khandelwal and J. P. Green,Inhibition of brain histamine metabolism by metoprine. Biochem. Pharmacol.35, 307–310 (1986).CrossRefPubMedGoogle Scholar
  58. Huszti, Z., A. Kenessey, M. Kurti and T. L. Sourkes,Non-mast cell histamine levels in rat tissues after histidine loading. Eur. J. Pharmacol.42, 231–235 (1977).CrossRefPubMedGoogle Scholar
  59. Imamura, I., T. Watanabe, Y. Sakamoto, T. Wakamiya, T. Shiba, Y. Hase, T. Tsuruhara and H. Wada,N τ-Ribosylhistidine, a novel histidine derivative in urine of histidinemic patients. J. Biol. Chem.260, 10526–10530 (1984a).Google Scholar
  60. Imamura, I., T. Watanabe, K. Maeyama, A. Kubota, A. Okada and H. Wada,Effect of food intake on urinary excretions of histamine, N τ methylhistamine, imidazole acetic acid and its conjugate(s) in humans and mice. J. Biochem. (Japan)96, 1931–1937 (1984b).Google Scholar
  61. Imamura, I., K. Maeyama, H. Wada and T. Watanabe,Determination of imidazole acetic acid and its conjugate(s) levels in urine, serum and tissues of rats: Studies on changes in their levels under various conditions. Br. J. Pharmacol.82, 701–707 (1984c).PubMedGoogle Scholar
  62. Karjala, S. A., and B. W. Turnquest,The characterization of two methylimidazoleacetic acids as radioactive histamine metabolites. J. Amer. Chem. Soc.77, 6358–6359 (1955).CrossRefGoogle Scholar
  63. Keyzer, J. J., B. G. Wolthers, F. A. J. Muskiet, H. F. Kauffman and A. Groen,Determination of N τ methylhistamine in plasma and urine by isotope dilution mass fragmentography. Clin. Chim. Acta113, 165–173 (1981).CrossRefPubMedGoogle Scholar
  64. Keyzer, J. J., B. G. Wolthers, H. Breukelman, H. F. Kauffman and J. G. R. De Monchy,Determination of N τ-methylimidazoleacetic acid (a histamine metabolite) in urine by gas chromatography using nitrogen-phosphorus detection. Clin. Chim. Acta121, 379–387 (1982).CrossRefPubMedGoogle Scholar
  65. Keyzer, J. J., H. Breukelman, H. Elzinga, B. J. Koopman, B. G. Wolthers and A. P. Bruins,Determination of histamine by chemical ionization mass spectrometry: Application to human urine. Biomed. Mass Spectrom.10, 480–484 (1983a).CrossRefPubMedGoogle Scholar
  66. Keyzer, J. J., B. G. Wolthers, H. Breukelman and W. Van Der Slik,Determination of N τ-methylhistamine in urine by gas chromatography using nitrogen-phosphorus detection. J. Chromatogr.275, 261–269 (1983b).PubMedGoogle Scholar
  67. Keyzer, J. J., J. G. R. De Monchy, J. J. van Doormaal and P. C. van Voorst Vader,Improved diagnosis of mastocytosis by measurement of urinary histamine metabolites. New England J. Med.309, 1603–1605 (1983c).Google Scholar
  68. Keyzer, J. J., B. G. Wolthers, F. A. J. Muskiet, H. Breukelman, H. F. Kauffman and K. De Vries,Measurement of plasma histamine by stable isotope dilution gas chromatography-mass spectrometry: Methodology and normal values. Anal. Biochem.139, 474–481 (1984a).CrossRefPubMedGoogle Scholar
  69. Keyzer, J. J., H. Udding and K. de Vries,Measurement of N τ-methylhistamine concentrations in urine as a parameter for histamine release by radiographic contrast media. Diagn. Imag. Clin. Med.53, 67–72 (1984b).Google Scholar
  70. Keyzer, J. J., H. Breukelman, B. G. Wolthers, F. J. Richardson and J. G. R. De Monchy,Measurement of N τ-methylhistamine concentrations in plasma and urine as a parameter for histamine release during anaphylactoid reactions. Agents Actions16, 76–79 (1985).PubMedGoogle Scholar
  71. Khandelwal, J. K., L. B. Hough, A. M. Morrishow and J. P. Green,Measurement of tele-methylhistamine and histamine in human cerebrospinal fluid, urine and plasma. Agents Actions12, 583–590 (1982a).PubMedGoogle Scholar
  72. Khandelwal, J. K., L. B. Hough, B. Pazhenchevsky, A. M. Morrishow and J. P. Green,Presence and measurement of methylimidazoleacetic acids in brain and body fluids. J. Biol. Chem.257, 12815–12819 (1982b).PubMedGoogle Scholar
  73. Khandelwal, J. K., L. B. Hough and J. P. Green,Regional distribution of the histamine metabolite, tele-methylimidazoleacetic acid, in rat brain: Effects of pargyline and probenecid. J. Neurochem.42, 519–522 (1984).PubMedGoogle Scholar
  74. Khandelwal, J. K., T. Kline and J. P. Green,Measurement of imidazoleacetic acid in urine by gas chromatography-mass spectrometry. J. Chromatogr.343, 249–257 (1985).PubMedGoogle Scholar
  75. Konishi, H., and Y. Kakimoto,Formation of γ-glutamylhistamine from histamine in rat brain. J. Neurochem.27, 1461–1463 (1976).PubMedGoogle Scholar
  76. Kopin, I. J.,Catecholamine metabolism: Basic aspects and clinical significance. Pharmacol. Rev.37, 333–364 (1985).PubMedGoogle Scholar
  77. Lagunoff, D., and E. P. Benditt,Proteolytic enzymes of mast cells. Ann. N.Y. Acad. Sci.103, 185–198 (1963).PubMedGoogle Scholar
  78. Lilja, B., S.-E. Lindell and T. Saldeen,Formation and destruction of C 14-histamine in human lung tissue in vitro. J. Allergy31, 492–496 (1960).PubMedGoogle Scholar
  79. Lorenz, W., H.-J. Reimann, H. Barth, J. Kusche, R. Meyer, A. Doenicke and M. Hutzel,A sensitive and specific method for the determination of histamine in human whole blood and plasma. Hoppe-Seyler's Z. Physiol. Chem.353, 911–920 (1972).PubMedGoogle Scholar
  80. Lorenz, W., and A. Doenicke,H 1 and H 2-blockade: A prophylactic principle in anesthesia and surgery against histamine-release responses of any degree of severity. NER Allergy Proc.6, 37–57;6, 174–194 (1985).PubMedGoogle Scholar
  81. Lorenz, W., H. D. Roher, A. Doenicke and C.-H. Ohmann,Histamine release in anaesthesia and surgery: A new method to evaluate its clinical significance with several types of causal relationship. Clin. Anaethesiol.2, 403–426 (1984).Google Scholar
  82. Maslinski, S., B. Schippert, K.-A. Kovar and K.-Fr. Sewing,Methylation of histamine in the gastric mucosa. Digestion15, 497–505 (1977).PubMedGoogle Scholar
  83. Miller, L. P., and W. H. Oldendorf,Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J. Neurochem.46, 1412–1416 (1986).PubMedGoogle Scholar
  84. Mita, H., H. Yasueda and T. Shida,Quantitative analysis of histamine in biological samples by gas chromatography-mass spectrometry. J. Chromatogr.181, 153–159 (1980).PubMedGoogle Scholar
  85. Moss, J., and C. E. Rosow,Histamine release by narcotics and muscle relaxants in humans. Anesthesiology59, 330–339 (1983).PubMedGoogle Scholar
  86. Mundy, D. I., and W. J. Strittmatter,Requirement for metalloendoprotease in exocytosis: Evidence in mast cells and adrenal chromaffin cells. Cell40, 645–656 (1985).CrossRefPubMedGoogle Scholar
  87. Nakajima, T., and I. Sano,A metabolite of histamine: 4(5)-imidazoylethane-2-ol. Biochim. Biophys. Acta82, 260–265 (1964).PubMedGoogle Scholar
  88. Navert, H., E. V. Flock, G. M. Tyce and C. F. Code,Metabolism of exogenous histamine-14 C during gastric secretion in dogs. Am. J. Physiol.217, 1823–1829 (1969).PubMedGoogle Scholar
  89. Navert, H., R. Berube and A. Wollin,Quantitative determination of histamine metabolites by capillary gas chromatography. Can. J. Physiol. Pharmacol.63, 766–772 (1985).PubMedGoogle Scholar
  90. Netter, K. J., V. H. Cohn, Jr., and P. A. Shore,Sex difference in histamine metabolism in the rat. Am. J. Physiol.201, 224–226 (1961).PubMedGoogle Scholar
  91. Nielsen, J. A., and C. A. Johnston,Rapid, concurrent analysis of dopamine, 5-hydroxytryptamine, their precursors and metabolites utilizing high performance liquid chromatography with electrochemical detection: Analysis of brain tissue and cerebrospinal fluid. Life Sci.31, 2847–2856 (1982).CrossRefPubMedGoogle Scholar
  92. Nilam, F., and I. R. Smith,N α-methylhistamine was not detected in brain by a sensitive, specific radioenzymatic assay. Br. J. Pharmacol.72, 505 P (1981).Google Scholar
  93. Oishi, R., M. Nishibori and K. Saeki,Regional differences in the turnover of neuronal histamine in the rat brain. Life Sci.34, 691–699 (1984).CrossRefPubMedGoogle Scholar
  94. Page, I. H.,Serotonin. pp. 104–109, Year Book Medical Publishers, Chicago (1968).Google Scholar
  95. Popielski, L.,β-Imidazolylathylamin und die Organextrakte. Erster Teil: β-imidazolylathylamin als mächtiger Erreger der Magendrüsen. Pfluegers Arch. Ges. Physiol.178, 214–236 (1920).CrossRefGoogle Scholar
  96. Prell, G. D., and J. P. Green,Histamine as a neuroregulator. Ann. Rev. Neurosci.9, 209–254 (1986).CrossRefPubMedGoogle Scholar
  97. Reichelt, K. L., P. D. Edminson and E. Kvamme,The formation of peptidoamines from constituent amino acids and histamine in hypothalamic tissue. J. Neurochem.26, 811–815 (1976).PubMedGoogle Scholar
  98. Reimann, H.-J., J. Ring, B. Ultsch and P. Wendt,Intragastral provocation under endoscopic control (IPEC) in food allergy: Mast cell and histamine changes in gastric mucosa. Clin. Allergy15, 195–202 (1985).PubMedGoogle Scholar
  99. Roberts, L. J. II and J. A. Oates,Accurate and efficient method for quantification of urinary histamine by gas chromatography negative ion chemical ionization mass spectrometry. Anal. Biochem.136, 258–263 (1984).CrossRefPubMedGoogle Scholar
  100. Roberts, L. J. II, K. A. Aulsenbrook and J. A. Oates,Comparative evaluation of the radioenzymatic method for the determination of urinary histamine with a mass spectrometric assay. J. Chromatogr.338, 41–49 (1985).PubMedGoogle Scholar
  101. Robertson, J. I. S., W. S. Peart and T. M. Andrews,The mechanism of facial flushes in the carcinoid syndrome. Quart. J. Med.31, 103–127 (1962).PubMedGoogle Scholar
  102. Robinson, J. D. and J. P. Green,The presence of imidazoleacetic acid riboside and imidazoleacetic acid ribotide in rat tissues. Nature203, 1178–1179 (1964).PubMedGoogle Scholar
  103. Robinson, J. D., J. H. Anderson and J. P. Green,The uptake of 5-hydroxytryptamine and histamine by particulate fractions of brain. J. Pharmacol. Exp. Ther.147, 236–243 (1965).PubMedGoogle Scholar
  104. Salari, H., P. Borgeat, M. Fournier, J. Hebert and G. Pelletier,Studies on the release of leukotrienes and histamine by human lung parenchymal and bronchial fragments upon immunologic and nonimmunologic stimulation. j. Exp. Med.162, 1904–1915 (1985).CrossRefPubMedGoogle Scholar
  105. Sattler, J., R. Hesterberg, W. Lorenz, U. Schmidt, M. Crombach and C.-D. Stahlknecht,Inhibition of human and canine diamine oxidase by drugs used in an intensive care unit: Relevance for clinical side effects? Agents Actions16, 91–94 (1985).PubMedGoogle Scholar
  106. Schayer, R. W.,Metabolism and excretion of histamine. Handb. Exp. Pharmacol.18/2, 109–129 (1978).Google Scholar
  107. Schayer, R. W., and J. A. D. Cooper,Metabolism of C 14-histamine in man. J. Appl. Physiol.9, 481–483 (1956).PubMedGoogle Scholar
  108. Schayer, R. W., and M. A. Reilly,In vivo formation and catabolism of 14 C-histamine in mouse brain. J. Neurochem.17, 1649–1655 (1970).Google Scholar
  109. Schwartz, J.-C., H. Pollard, S. Bischoff, M. C. Rehault and M. Verdiere-Sahuque,Catabolism of 3 H-histamine in the rat brain after intracisternal administration. Eur. J. Pharmacol.16, 326–336 (1971).CrossRefPubMedGoogle Scholar
  110. Schwartz, J.-C., C. Lampart and C. Rose,Histamine formation in rat brain in vivo: Effects of histidine loads. J. Neurochem.19, 801–810 (1972).PubMedGoogle Scholar
  111. Sheinman, B. D., J. L. Devalia, R. J. Davies, S. J. Crook and S. Tabaqchali,Synthesis of histamine by Haemophilus influenzae. Br. Med. J.292, 857–858 (1986).Google Scholar
  112. Sjaastad, O.,Possible in vivo deacetylation of N-acetylhistamine in man. Nature216, 1111–1112 (1967).PubMedGoogle Scholar
  113. Snyder, S. H., J. Axelrod and H. Bauer,The fate of C 14-histamine in animal tissues. J. Pharmacol. Exp. Ther.144, 373–379 (1964).Google Scholar
  114. Snyder, S. H., B. Brown and M. J. Kuhar,The subsynaptosomal localization of histamine, histidine decarboxylase and histamine methyltransferase in rat hypothalamus. J. Neurochem.23, 37–45 (1974).PubMedGoogle Scholar
  115. Sokoloff, B.,Carcinoid and Serotonin. Springer-Verlag, New York (1968).Google Scholar
  116. Stein, W. H., and S. Moore,The free amino acids of human blood plasma. J. Biol. Chem.211, 915–926 (1954).PubMedGoogle Scholar
  117. Stifel, F. B., and R. H. Herman,Histidine metabolism. Am. J. Clin. Nutr.24, 207–217 (1971).PubMedGoogle Scholar
  118. Swahn, C. G., and G. Sedvall,Identification and determination of tele-methylhistamine in cerebrospinal fluid by gas chromatography-mass spectrometry. J. Neurochem.37, 461–466 (1981).PubMedGoogle Scholar
  119. Swahn, C. G., and G. Sedvall,Identification and determination of 1-methylimidazole-4-acetic acid in human cerebrospinal fluid by gas chromatography-mass spectrometry. J. Neurochem.40, 688–696 (1983).PubMedGoogle Scholar
  120. Tabor, H., and E. Mosettig,Isolation of acetylhistamine from urine following oral administration of histamine. J. Biol. Chem.180, 703–706 (1949).Google Scholar
  121. Taylor, K. M., and E. R. Lieber,Subcellular distribution and properties of intestinal histamine-metabolizing enzymes from rats, guinea pigs and Rhesus monkeys. Comp. Biochem. Physiol.63C, 21–26 (1979).Google Scholar
  122. Taylor, K. M., and S. H. Snyder,Dynamics of the regulation of histamine levels in mouse brain. J. Neurochem.19, 341–344 (1972).PubMedGoogle Scholar
  123. Thon, K. P., W. Lorenz, Ch. Ohmann, D. Weber, H. Rohde and H. D. Roher,Sample taking problems in measuring actual histamine levels of human gastroduodenal mucosa: Specific and general relevance in clinical trials on peptic ulcer pathogenesis and selective proximal vagotomy. Gut26, 1165–1178 (1985).PubMedGoogle Scholar
  124. Tsuji, M., Y. Matsuoka and T. Nakajima,Studies on formation of γ-glutamylamines in rat brain and their synthetic and catabolic enzymes. J. Neurochem.29, 633–638 (1977).PubMedGoogle Scholar
  125. Urbach, K. F.,Nature and probable origin of conjugated histamine excreted after ingestion of histamine. Proc. Soc. Exp. Biol. Med.70, 146–152 (1949).Google Scholar
  126. Weinreich, D.,γ-Glutamylhistamine: A major product of histamine metabolism in ganglia of the marine mollusk, Aplysia californica. J. Neurochem.32, 363–369 (1979).PubMedGoogle Scholar
  127. Westerink, B. H. C., and J. Korf,Acidic dopamine metabolites in cortical areas of the rat brain: Localization and effects of drugs. Brain Res.113, 429–434 (1976).CrossRefPubMedGoogle Scholar
  128. Westling, H., and H. Wetterqvist,Methylation of [14 C]-histamine by the rat kidney in vitro. Med. Exp. (Basel)7, 51–55 (1962).Google Scholar
  129. Wetterqvist, H.,Histamine metabolism and excretion. Handb. Exp. Pharmacol.18/2, 131–150 (1978).Google Scholar
  130. White, T.,Formation and catabolism of histamine in cat brain in vivo. J. Physiol. (London)152, 299–308 (1960).Google Scholar
  131. Wilk, S., and M. Orlowski,The occurrence of free l-pyrrolidone carboxylic acid in body fluids and tissues. FEBS Lett.33, 157–160 (1973).CrossRefPubMedGoogle Scholar
  132. Wilk, S., and B. Zimmerberg,Absence of 3-methoxy-4-hydroxyphenylethanol in brain. Biochem. Pharmacol.22, 623–628 (1973).CrossRefPubMedGoogle Scholar
  133. Wilk, S., E. Watson and B. Travis,Evaluation of dopamine metabolism in rat striatum by a gas chromatographic technique. Eur. J. Pharmacol.30, 238–243 (1975).CrossRefPubMedGoogle Scholar
  134. Windaus, A., and W. Vogt,Synthese des Imidazolyl Athylamins. Ber. Dtsch. Chem. Ges.40, 3691–3695 (1907).Google Scholar
  135. Wintroub, B. U., C. E. Kaempfer, N. M. Schechter and D. Proud,A human lung mast cell chymotrypsin-like enzyme. J. Clin. Inv.77, 196–201 (1986).Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • J. P. Green
    • 1
  • G. D. Prell
    • 1
  • J. K. Khandelwal
    • 1
  • P. Blandina
    • 1
  1. 1.Department of Pharmacology, Mount Sinai School of Medicineof the City University of New YorkNew York

Personalised recommendations