Advertisement

Agents and Actions

, Volume 28, Issue 3–4, pp 173–184 | Cite as

The effect of leukotriene antagonists, lipoxygenase inhibitors and selected standards on leukotriene-mediated allergic bronchospasm in guinea pigs

  • W. Kreutner
  • J. Sherwood
  • C. Rizzo
Allery, Histamine and Kinins

Abstract

Leukotrienes (LT) C4, D4, and E4 are major contributors to the pathobiology of human bronchial asthma. Therefore, it is likely that compounds that antagonize the action or inhibit the formation of LTs will be useful therapeutic agents. We have studied the effects of LT antagonists, 5-lipoxygenase inhibitors and selected standards in a model of LT-mediated allergic bronchospasm in guinea pigs. Sensitized animals were pretreated with mepyramine, indomethacin and propranolol to eliminate the influence of histamine, prostaglandins, thromboxanes and circulating catecholamines. In these animals, inhalation of antigen resulted in a bronchospasm consistent with a LT-mediated response that was slow in onset, of long duration and was inhibited by the selective LTD4, antagonists FPL-55712, LY-171,883 and ICI-198,615 ICI-198, 615 was approximately 50-times more potent than FPL-55712 by the intravenous and intratracheal routes. However, of thirteen compounds known to inhibit 5-lipoxygenase and LT biosynthesisin vitro only phenidone, piriprost and AA-861 were active in thisin vivo model. The allergic bronchospams was inhibited by bronchodilators (e.g. PGE2, aminophylline and forskolin) and by some mast cell stabilizers, but was otherwise insensitive to other pharmacological classes of compounds including calcium channel blockers and antagonists of serotonin, acetylcholine and platelet-activating factor. This model seems useful and reasonably selective for the evaluation of new antianaphylactic compounds that are LT antagonists. The inactivity of many 5-lipoxygenase inhibitors in this model suggests they do not inhibit LT formationin vivo.

Keywords

Propranolol Indomethacin PGE2 Thromboxane Forskolin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. H. Kellaway and E. R. Trethewie,The liberation of a slow-reacting smooth muscle stimulating substance in anaphylaxis. Quat. J. Exp. Physiol.30, 121–145 (1940).Google Scholar
  2. [2]
    R. P. Orange and K. F. Austen,Slow-reacting substances of anaphylaxis. InAdvances in Immunology, vol. 10. (Ed. F. J. Dixon and H. G. Kunkel) pp 105–144, Academic Press, New York 1969.Google Scholar
  3. [3]
    E. J. Goetzl,Mediators of immediate hypersensitivity derived from arachidonic acid. N. Eng. J. Med.303, 822–825 (1980).Google Scholar
  4. [4]
    S. E. Dahlen, G. Hansson, P. Hedqvist T. Bjorck, E. Granstrom and B. Dahlen,Allergen challenge of lung tissue from asthmatics elicits bronchial contractions that correlate with the release of leukotrienes C 4,D 4,E 4. Proc. Natl. Acad. Sci. USA80, 1712–1716 (1983).PubMedGoogle Scholar
  5. [5]
    S. E. Dahlen, G. Hansson, P. Hedqvist, S. Hammarstrom and B. Samuelsson,Leukotrienes are potent constrictors of human bronchi. Nature288, 484–486 (1980).PubMedGoogle Scholar
  6. [6]
    P. Hedqvist, S. E. Dahlen, L. Gustafsson, S. Hammarstrom and B. Samuelsson,Biological profile of leukotrienes C 4 and D 4. Acta Physiol. Scand.110, 331–333 (1980).PubMedGoogle Scholar
  7. [7]
    M. C. Holroyde, R. E. C. Altouynyan, M. Cole, M. Dixon and E. V. Elliot,Bronchoconstriction produced in man by leukotrienes C and D. Lancet2, 17–18 (1981).PubMedGoogle Scholar
  8. [8]
    J. W. Weiss, J. M. Drazen and N. Cole,Bronchoconstrictor effects of leukotriene C in humans. Science216, 196–198. (1982).PubMedGoogle Scholar
  9. [9]
    R. C. Murphy, S. Hammarstrom and B. Samuelsson,Leukotriene C, a slow-reacting substance from murine mastocytoma cells. Proc. Natl. Acad. Sci. USA76, 4275–4279 (1979).PubMedGoogle Scholar
  10. [10]
    S. Hammarstrom, B. Samuelsson, D. A. Clark, G. Goto, A. Marfat, C. Miokowski and E. J. Corey,Stereochemistry of leukotriene C-1. Biochem. Biophys. Res. Commun.92, 946–953 (1980).PubMedGoogle Scholar
  11. [11]
    H. R. Morris, G. W. Taylor, P. J. Piper and J. R. Tippins,Structure of slow-reacting substance of anaphylaxis from guinea pig lung. Nature285, 104–106 (1980).PubMedGoogle Scholar
  12. [12]
    J. C. Delehunt, A. P. Perruchoud, L. Yerger, B. Marchette, J. S. Stevenson and W. M. Abraham,The role of slow-reacting substance of anaphylaxis in the late bronchial response after antigen challenge in allergic sheep. Am. Rev. Resp. Dis.130, 748–754 (1984).PubMedGoogle Scholar
  13. [13]
    W. M. Abraham, A. Wanner, J. S. Stevenson and G. A. Chapman,The effect of an orally active leukotriene D 4 /E 4 antagonist LY-171883 on antigen-induced airway responses in allergic sheep. Prostaglandins31, 457–467 (1986).PubMedGoogle Scholar
  14. [14]
    R. Patterson, R. Orange and K. E. Harris,A study of the effect of slow-reacting substances of anaphylaxis on the rhesus monkey airway. J. Allergy Clin. Immun.62, 371–377 (1978).PubMedGoogle Scholar
  15. [15]
    H. G. Johnson, M. L. McNee, M. K. Bach and H. W. Smith,The activity of a new, novel inhibitor of leukotrine synthesis in rhesus monkey ascaris reactors. Int. Arch. Allergy appl. Immun.70, 169–173 (1983).Google Scholar
  16. [16]
    G. Brunet, H. Piechuta, R. Hamel, G. Holme and A. W. Ford-Hutchinson,Respiratory respones to leukotrienes and biologic amines in normal and hyperreactive rats. J. Immun.131, 434–438 (1983).PubMedGoogle Scholar
  17. [17]
    D. M. Ritchie, J. N. Siercho, R. J. Capetola and M. E. Rosenthale,SRS-A mediated bronchospasm by pharmacologic modification of lung anaphylaxis in vivo. Agents and Actions11, 396–401 (1981).PubMedGoogle Scholar
  18. [18]
    W. H. Anderson, M. O'Donnell, B. A. Simko and A. F. Welton,An in vivo model for measuring antigen-induced SRS-A mediated bronchoconstriction and plasma SRS-A levels in the guinea pig. Br. J. Pharmacol.78, 67–74 (1983).PubMedGoogle Scholar
  19. [19]
    P. Hedqvist, S. E. Dahlen and U. Palmertz,Leukotriene-dependent airway anaphylaxis in guinea pigs. Prostaglandins28, 605–608 (1984).Google Scholar
  20. [20]
    W. Kreutner, R. W. Chapman, A. Gulbenkian and S. Tozzi.Bronchodilator and antiallergy activity of forskolin. Eur. J. Pharmacol.111, 1–8 (1985).PubMedGoogle Scholar
  21. [21]
    J. A. Zivin and J. J. Bartko,Statistics for disinterested scientists. Life Sci.18 15–26 (1976).PubMedGoogle Scholar
  22. [22]
    R. W. Chapman and W. Kreutner,Comparison of the protective effect of orciprenaline with an orciprenaline-oxymetazoline combination on experimental bronchospasm in guinea pigs. Arzneim. Forsch.35, 1410–1412 (1985).Google Scholar
  23. [23]
    J. Augstein, J. B. Farmer, T. B. Lee, P. Sheard and M. L. Tattersall,Selective inhibitor of slow-reacting substance of anaphylaxis, Nature245, 215–217 (1973).PubMedGoogle Scholar
  24. [24]
    J. H. Mussler, A. F. Kreft and A. J. Lewis,New developments concerning leukotriene antagonists. A review. Agents and Actions18, 332–341 (1986).PubMedGoogle Scholar
  25. [25]
    D. W. Snyder, R. E. Giles, R. A. Keith, Y. K. Lee and R. D. Krell,In vitro pharmacology of ICI 198,615: A novel, potent and selective peptide leukotriene antagonist. J. Pharmacol. Exp. Ther.243, 548–556 (1987).PubMedGoogle Scholar
  26. [26]
    R. G. Van Ingwegen, A. Khandwala, R. Gordon, P. Sonnino, S. Coutts and S. Jolly,Rev-5901. An orally effective peptido leukotriene antagonist, detailed biochemical-pharmacological profile. J. Pharmacol. Exp. Ther.241 117–124 (1987).PubMedGoogle Scholar
  27. [27]
    M. Ohashi, R. Kanai, K. Nishino, T. Sato and I. Takayanagi,Antagonistic effect of KC-404, a new antiasthmatic agent on leukotriene D 4 -induced contractile responses in isolated guinea pig smooth muscles. Prostaglandins32, 875–888 (1986).PubMedGoogle Scholar
  28. [28]
    G. J. Blackwell and R. J. Flower,1-Phenyl-3-pyrazolidine. An inhibitor of cyclooxygenase and lipoxygenase pathways in lung and platelets. Prostaglandins16, 417–425 (1978).PubMedGoogle Scholar
  29. [29]
    M. K. Bach, R. L. Griffin and I. M. Richards,Inhibition of the presumable leukotriene dependent component of antigeninduced bronchoconstriction in the guinea pig by piriprost (U-60,257). Int. Archs. Allergy appl. Immun.77, 264–266 (1985).Google Scholar
  30. [30]
    T. Yoshimoto, C. Yokoyama, K. Ochi, S. Yamamoto, Y. Maki, Y. Ashida, S. Terao and M. Shiraishi,2,3,5-Trimethyl-6-(12-hydroxy-5,10-dodecadiynyl) 1,4-benzoquinone (AA-861), a selective inhibitor of the 5-lipoxygenase reactions and the biosynthesis of slow reacting substance of anaphylaxis. Biochem. Biophys. Acta713, 470–473 (1982).PubMedGoogle Scholar
  31. [31]
    R. W. Randall, K. E. Eakins, G. A. Higgs, J. A. Salmon and J. E. Tateson,Inhibition of arachidonic acid cyclooxygenase and lipoxygenase activities of leukocytes by indomethacin and BW-755 C. Agents and Actions10, 553–555 (1980).PubMedGoogle Scholar
  32. [32]
    J. R. Walker and W. Dawson,Inhibition of rabbit PMN lipoxygenase activity by benoxaprofen. J. Pharm. Pharmacol.31, 778–780 (1979).PubMedGoogle Scholar
  33. [33]
    Y. Koshihara, T. Neichi, S. Murota, A. Lao, Y. Fujimoto and T. Tatsuno,Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochem. Biophys. Acta792, 92–97 (1984).PubMedGoogle Scholar
  34. [34]
    H. R. Morris, P. J. Piper, G. W. Taylor and J. R. Tippins,The role of arachidonate lipoxygenase in the release of SRS-A from guinea pig chopped lung. Prostaglandins19, 371–383 (1980).PubMedGoogle Scholar
  35. [35]
    J. Baumann, F. V. Bruchhausen and G. Wurm,Flavonoids and related compounds as inhibitors of arachidonic acid peroxidation. Prostaglandins20, 627–639 (1980).PubMedGoogle Scholar
  36. [36]
    T. Neichi, Y. Koshihara and S. Murota,Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis. Biochem. Biophys. Acta753, 130–132 (1983).PubMedGoogle Scholar
  37. [37]
    J. R. Beetens, W. Loots, Y. Somers, M. C. Coene and F. DeClerck,Ketoconazole inhibits the biosynthesis of leukotrienes in vitro and in vivo. Biochem. Pharmacol.35, 883–891 (1986).PubMedGoogle Scholar
  38. [38]
    M. S. Wu, T. Biftu and T. W. Duebber,Inhibition of the platelet activating factor-induced in vivo responses in rats by trans-2,5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (L-652,731), a PAF receptor antagonist. J. Pharmacol. Exp. Ther.239, 841–845 (1986).PubMedGoogle Scholar
  39. [39]
    K. V. Honn and J. R. Dunn,Nafazatrom (Bay g6575) inhibition of tumor cell lipoxygenase activity and cellular proliferation. FEBS Letters139, 65–68 (1982).PubMedGoogle Scholar
  40. [40]
    W. F. Stenson and E. Lobos,Sulfasalazine inhibits the synthesis of chemotactic lipids by neutrophils. J. Clin. Invest.69, 494–497 (1982).PubMedGoogle Scholar
  41. [41]
    I. Kennedy, M. Langley and C. J. Whelan,The release and metabolism of 3 H-arachidonic acid from guinea pig perfused lungs in vitro. A simple method for the study of the action of drugs on the release and metabolism of arachidonic acid. J. Pharmacol. Methods6, 143–151 (1981).PubMedGoogle Scholar
  42. [42]
    D. M. Harris, R. Greenberg, M. B. Phillips, G. H. Osman and M. J. Antonaccio,The effect of SQ-80338, 1-(3-phenyl-2-propenyl)-1-H-imidazole on thromboxane synthetase activity and arachidonic acid-induced platelet aggregation and bronchoconstriction InAdvances in Prostaglandin and Thromboxane Research, vol. 6, (Eds B. Samuelsson, P. Ramwell and R. Paoletti) pp. 437, Raven Press, New York 1980.Google Scholar
  43. [43]
    R. Carrier, E. J. Cragoe, D. Ethier, A. W. Ford-Hutchinson, Y. Girard, R. A. Hall, P. Hamel, J. Rokach, N. N. Share, C. A. Stone and P. Yusko,Studies on L-640,035, a novel antagonist of contractile prostanoids in the lung. Br. J. Pharmacol.82, 389–395 (1984).PubMedGoogle Scholar
  44. [44]
    M. K. Church and C. F. Gradidge,The activity of sodium cromoglycate analogues in human lung in vitro. A comparison with rat passive cutaneous anaphylaxis and clinical efficacy. Br. J. Pharmacol.70, 307–311 (1980).PubMedGoogle Scholar
  45. [45]
    H. G. Johnson, R. L. Griffin and J. B. Wright,The effect of lodoxamide ethyl [diethyl-N,N′-(2-chloro-5-cyano-m-phenylene)-dioxamate] on in vivo anaphylactic reactions. Agents and Actions9, 235–238 (1979).PubMedGoogle Scholar
  46. [46]
    J. El-Azab and P. B. Stewart,Pharmacologic profile of a new antiallergic compound PRD-92-Ea. Int. Archs. Allergy appl. Immun.55, 350–361 (1977).Google Scholar
  47. [47]
    H. Cairns, D. Cox, K. J. Gould, A. H. Ingall and J. L. Suschitsky,New antiallergic pyranc [3,2-g] quinoline-2,8-dicarboxylic acids with potential for the topical treatment of asthma. J. Med. Chem.28, 1832–1842 (1985).PubMedGoogle Scholar
  48. [48]
    J. L. Suschitsky and P. Sheard,The search for antiallergic drugs for the treatment of asthma. Problems in finding a successor to sodium cromoglycate InProgress in Medicinal Chemistry, vol. 21. (Eds G. P. Ellis and G. B. West) pp 1–61, Elsevier, B. V. 1984.Google Scholar
  49. [49]
    J. Augstein, H. Cairns, D. Hunter, T. B. Lee, J. Suschitsky, R. E. C. Altouynan, D. M. Jackson, J. Mann, T. S. C. Orr and P. Sheard,New orally effective chromone derivatives for the treatment of asthma. Agents and Actions7, 443–445 (1977).PubMedGoogle Scholar
  50. [50]
    T. Takashima, T. Ono, M. Ohtsuka and S. Kumada,The mode of action of antianaphylactic effect of tiaramide hydrochloride. Arzneim. Forsch.29, 903–910 (1979).Google Scholar
  51. [51]
    P. Simonoff, F. C. Reed and J. E. Schurig,BL-5255 activity in animal models of immediate hypersensitivity reactions. Int. Archs. Allergy appl. Immun.67, 101–108 (1982).Google Scholar
  52. [52]
    K. Strandberg and P. Hedqvist,Bronchial effects of some prostaglandin E and F analogues. Acta Physiol. Scand100, 172–181 (1977).PubMedGoogle Scholar
  53. [53]
    M. K. Church,Biochemical basis of pulmonary and antiallergy drugs. InPulmonary and Antiallergic Drugs. (Ed J. P. Devlin) pp 101–102, John Wiley and Sons, New York 1985.Google Scholar
  54. [54]
    R. E. Ruffin and M. Newhouse,Dipyridamole, is it a bronchodilator. Eur. J. Resp. Dis.62, 123–126 (1981).Google Scholar
  55. [55]
    T. Asano and H. Hidaka,Intracellular Ca 2+ antagonist, HA-1004, Pharmacological properties different from those of nicardipine. J. Pharmacol. Exp. Ther.233 454–458 (1985).PubMedGoogle Scholar
  56. [56]
    Z. Terashita, S. Tsushima, Y. Yoshioka, H. Nomura, Y. Inada and K. Nishikawa,CV-3988, a specific antagonist of platelet activating factor. Life Sci.32, 1975–1982 (1983).PubMedGoogle Scholar
  57. [57]
    H. O. J. Collier and G. W. L. James,Humoral factors affecting pulmonary inflation during acute anaphylaxis in the guinea pig in vivo. Br. J. Pharmacol. Chemother.30, 283–301 (1967).Google Scholar
  58. [58]
    I. Broder, S. Rogers, D. W. Chamberlain and E. N. C. Milne,Model of allergic bronchoconstriction in the guinea pig. Clin. Immun. Immunopathol.9, 1–15 (1978).Google Scholar
  59. [59]
    A. K. Adams, III and L. Lichtenstein,In vitro studies of antigen-induced bronchospasm. Effect of antihistamine and SRS-A antagonist in response of sensitized guinea pig and human airways to antigen. J. Immun.122, 555–562 (1979).PubMedGoogle Scholar
  60. [60]
    M. W. McCullough, C. Proctor and M. J. Rand,Evidence for an adrenergic homeostatic bronchodilator reflex mechanism. Eur. J. Pharmacol.2, 214–223 (1967).PubMedGoogle Scholar
  61. [61]
    W. Kreutner and C. Rizzo,Labetalol protects against the potentiation by propranolol of the bronchospasm to norepinephrine in guinea pigs. Arch. Int. Pharmacodynamic Ther.285, 117–128 (1987).Google Scholar
  62. [62]
    P. Schiantarelli, S. Bongrani, R. Razzetti and G. Folco,Beta adrenoreceptor and cyclooxygenase block as a tool for evoking the direct bronchoconstrictor effect of leukotriene C 4 in the guinea pig. Eur. J. Pharmacol.106, 263–269 (1985).Google Scholar
  63. [63]
    W. E. Brokelhurst and S. C. Lahiri,The production of bradykinin in anaphylaxis. J. Physiol.160. 15P (1962).Google Scholar
  64. [64]
    B. G. Simonsson and N. Svedmyr,Bronchoconstrictor drugs. Pharmacol. Ther.3, 239–303 (1978).Google Scholar
  65. [65]
    R. D. Krell, R. E. Giles, Y. K. Lee and D. W. Snyder,In vivo pharmacology of ICI-198,615: A novel, potent and selective peptide leukotriene antagonist. J. Pharmacol. Exp. Ther.243, 557–564 (1987).PubMedGoogle Scholar
  66. [66]
    J. R. Boot, W. J. F. Sweatman, B. A. Cox, K. Stone and W. Dawson,The antiallergic activity of benoxaprofen, 2-(4-chlorophenyl)-α-methyl-5-benzoxazole acetic acid, a lipoxygenase inhibitor. Int. Archs Allergy appl. Immun.67, 340–343 (1982).Google Scholar
  67. [67]
    R. W. Fuller, N. Maltby, R. Richmond C. T. Dollery G. W. Taylor, W. Ritter and E. Phillip,Oral nafazatrom in man. Effect on inhaled antigen challenge. Br. J. Clin. Pharmacol.23, 677–681 (1987).PubMedGoogle Scholar
  68. [68]
    F. Carey, D. Haworth, A. E. Edmonds and R. A. Forder,Simple procedure for measuring the pharmacodynamics and analgesic potential of lipoxygenase inhibitors. J. Pharmacol. Methods20, 347–356 (1988).PubMedGoogle Scholar
  69. [69]
    K. Forsberg and L. Sorenby,The influence of a new corticosteroid, budesonide, on anaphylactic bronchoconstriction and SRS-A release in the guinea pig. Agents and Actions11, 391–395 (1985).Google Scholar
  70. [70]
    P. Andersson and R. Brattsand,Protective effects of the glucocorticoid, budesonide, on lung anaphylaxis in actively sensitized guinea pigs. Inhibition of IgE, but not IgG-mediated anaphylaxis. Br. J. Pharmacol.76, 139–147 (1982).PubMedGoogle Scholar
  71. [71]
    M. Kaliner,Mechanisms of glucocorticoid action in bronchial asthma J. Allergy Clin. Immun.,76, 321–329 (1985).PubMedGoogle Scholar
  72. [72]
    A. J. Hodgson and J. W. Funder,Glucocorticoid receptors in the guinea pig. Am. J. Physiol.235, R115-R120 (1978).PubMedGoogle Scholar
  73. [73]
    M. Hitchcock,Effect of inhibitors of prostaglandin synthesis and prostaglandins E 2 and F on the immunologic release of mediators of inflammation from actively sensitized guinea pig lung. J. Pharmacol. Exp. Ther.207, 630–640 (1978).PubMedGoogle Scholar
  74. [74]
    L. Hendeles and E. Harman,Should we abandon the notion that calcium channel blockers are potentially useful for asthma? J. Allergy Clin. Immun.79, 853–855 (1987).PubMedGoogle Scholar
  75. [75]
    I. K. Krampetz and R. Bose,Relaxant effect of amiloride on canine tracheal smooth muscle. J. Pharmacol. Exp. Ther.246, 641–648 (1988).PubMedGoogle Scholar
  76. [76]
    H. Ozaki, T. Kojima, T. Moriyama, H. Karaki, N. Urakawa, K. Kohama and Y. Nonomura,Inhibition by amiloride of contractile elements in smooth muscle of guinea pig taenia cecum and chicken gizzard. J. Pharmacol. Exp. Ther.243, 370–377 (1987).PubMedGoogle Scholar
  77. [77]
    J. D. Sweatt, S. L. Johnson, E. J. Cragoe and L. E. Limbird,Inhibitors of Na + /H + exchange block stimulus-provoked arachidonic acid release in human platelets. J. Biol. Chem.260, 12910–12919 (1985).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • W. Kreutner
    • 1
  • J. Sherwood
    • 1
  • C. Rizzo
    • 1
  1. 1.Department of Allergy and InflammationSchering-Plough CorporationBloomfieldUSA

Personalised recommendations