Skip to main content

Effects of Drugs on Air Ways

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 728 Accesses

Abstract

Several autacoids such as histamine and leukotrienes induce bronchoconstriction. Histamine is an important mediator of immediate allergic and inflammatory reactions. It causes bronchoconstriction by activating H1-receptors. Calcium ionophores induce the release of leukotrienes via the 5-lipoxygenase pathway. Leukotrienes are powerful bronchoconstrictors that appear to act on smooth muscles via specific receptors. In this method, drugs are tested for their capability of inhibiting bronchospasm induced by histamine or calcium ionophore. It is used to detect H1- and leukotriene receptor blocking properties of test compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Spasmolytic Activity in Isolated Guinea Pig Lung Strips

  • Barrow RE (1986) Volume-pressure cycles from air and liquid-filled intact rabbit lungs. Respir Physiol 63:19–30

    CAS  PubMed  Google Scholar 

  • Foreman JC, Shelly R, Webber SE (1985) Contraction of guinea-pig lung parenchymal strips by substance P and related peptides. Arch Int Pharmacodyn Ther 278:193–206

    CAS  PubMed  Google Scholar 

  • Frazer DG, Weber KC, Franz GN (1985) Evidence of sequential opening and closing of lung units during inflation-deflation of excised rat lungs. Respir Physiol 61:277–288

    CAS  PubMed  Google Scholar 

  • Kleinstiver PW, Eyre P (1979) Evaluation of the lung parenchyma strip preparation to measure bronchoactivity. J Pharmacol Methods 2:175–185

    CAS  Google Scholar 

  • Lach E, Haddad EB, Gies JP (1993) Contractile effect of bombesin on guinea pig lung in vitro: involvement of GRP-preferring receptors. Am J Physiol 264:L80–86

    CAS  PubMed  Google Scholar 

  • Lach E, Trifilieff A, Muosli M, Landry Y, Gies JP (1994) Bradykinin-induced contraction of guinea pig lung in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 350:201–208

    CAS  Google Scholar 

  • Lulich KM, Papadimitriou JM, Paterson JW (1979) The isolated lung strip and single open tracheal ring: a convenient combination for characterizing Schultz-Dale anaphylactic contractions in the peripheral and central airways. Clin Exp Pharmacol Physiol 6:625–629

    CAS  PubMed  Google Scholar 

Spasmolytic Activity in Isolated Trachea

  • Barnes PJ (1993) Muscarinic receptor subtypes in airways. Life Sci 52:521–527

    CAS  PubMed  Google Scholar 

  • Castillo JC, de Beer EJ (1947) The tracheal chain. I. A preparation for the study of antispasmodics with particular reference to bronchodilator drugs. J Pharmacol Exp Ther 90:104–109

    CAS  PubMed  Google Scholar 

  • Coleman RA, Nials AT (1989) Novel and versatile superfusion system. Its use in the evaluation of some spasmogenic and spasmolytic agents using guinea pig isolated tracheal smooth muscle. J Pharmacol Methods 21(1):71–86

    CAS  PubMed  Google Scholar 

  • Da Silva A, Amrani YS, Trifilieff A, Landry Y (1995) Involvement of B2 receptors in bradykinin-induced relaxation of guinea-pig isolated trachea. Br J Pharmacol 114:103–108

    PubMed Central  PubMed  Google Scholar 

  • Eltze M, Galvan M (1994) Involvement of muscarinic M2 and M3, but not of M1 and M4 receptors in vagally stimulated contractions of rabbit bronchus/trachea. Pulmon Pharmacol 7:109–120

    CAS  Google Scholar 

  • Englert CE, Wirth K, Gehring D, Fürst U, Albus U, Scholz W, Rosenkranz B, Schölkens BA (1992) Airway pharmacology of the potassium channel opener, HOE 234, in guinea pigs: in vitro and in vivo studies. Eur J Pharmacol 210:69–75

    Google Scholar 

  • Farmer SG, Fedan JS, Hay DWP, Raeburn D (1986) The effects of epithelium removal on the sensitivity of guinea-pig isolated trachealis to bronchodilator drugs. Br J Pharmacol 89:407–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farmer SG, Broom T, DeSiato MA (1994) Effects of bradykinin receptor agonists, and captopril and thiorphan in ferret isolated trachea: evidence for bradykinin generation in vitro. Eur J Pharmacol 259:309–313

    CAS  PubMed  Google Scholar 

  • Foster RW (1966) The nature of the adrenergic receptors of the trachea of the guinea-pig. J Pharm Pharmacol 18:1–12

    CAS  PubMed  Google Scholar 

  • Goldie RG, Papadimitriou JM, Paterson JW, Rigby PJ, Self HM, Spina D (1986a) Influence of the epithelium on responsiveness of guinea pig isolated trachea to contractile and relaxant agonists. Br J Pharmacol 87:5–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldie RG, Spina D, Henry PJ, Lulich KM, Paterson JW (1986b) In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, β-adrenoceptor agonists and theophylline. Br J Clin Pharmacol 22:669–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hashjin GS, Henricks PAJ, Folkerts G, Nijkamp FP (1995) Preparation of bovine tracheal smooth muscle for in vitro pharmacological studies. J Pharmacol Toxicol Methods 34:103–108

    CAS  PubMed  Google Scholar 

  • Hock JF, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) HOE 140 a new potent and long acting bradykinin-antagonist. In vitro studies. Br J Pharmacol 102:769–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hulsman AR, de Jongste JC (1993) Studies of human airways in vitro: a review of the methodology. J Pharm Toxicol Methods 30:117–132

    Google Scholar 

  • Kotlikoff MI, Kamm KE (1996) Molecular mechanisms of β-adrenergic relaxation of airway smooth muscle. Annu Rev Physiol 58:115–141

    CAS  PubMed  Google Scholar 

  • Lee T-L, Adaikan PG, Lau L-C, Ratnam SS, Dambisya YM (1997) Effects of bupivacaine and its isomers on guinea pig tracheal smooth muscle. Methods Find Exp Clin Pharmacol 19:27–33

    PubMed  Google Scholar 

  • Lulich KM, Paterson JW (1980) An in vitro study of various drugs on central and peripheral airways of the rat: a comparison with human airways. Br J Pharmacol 68:633–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoden KJ, Barnes PJ (1989) Effect of hydrogen peroxide on guinea-pig tracheal smooth muscle in vitro: role of cyclo-oxygenase and airway epithelium. Br J Pharmacol 98:325–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheth UK, Dadkar NK, Kamat UG (1972) Selected topics in experimental pharmacology. Kothari Book Depot, India

    Google Scholar 

  • Tamaoki J, Yamauchi F, Chiyotani A, Yamawaki I, Takeuchi S, Konno K (1993) Atypical β-adrenoceptor-(β 3-adrenoceptor) mediated relaxation of canine isolated bronchial muscle. J Appl Physiol 74:297–302

    CAS  PubMed  Google Scholar 

  • Toews ML, Ustinowa EE, Schultz HD (1997) Lysophosphatidic acid enhances contractility of isolated airway smooth muscle. J Appl Physiol 83:1216–1222

    CAS  PubMed  Google Scholar 

  • Vaali K, Li L, Redemann B, Paakkari I, Vapaatalo H (1996) In vitro bronchorelaxing effect of novel nitric oxide donors GEA 3268 and GEA 5145 in guinea pigs and rats. J Pharm Pharmacol 48:1309–1314

    CAS  PubMed  Google Scholar 

  • Waldeck B, Widmark E (1985) Comparison of the effects of forskolin and isoprenaline on tracheal, cardiac and skeletal muscles from guinea-pig. Eur J Pharmacol 112:349–353

    CAS  PubMed  Google Scholar 

  • Wali FA (1987) Local anaesthetics inhibit cholinergic and non-cholinergic neural and muscular contractions in avian tracheal smooth muscle. Acta Anaesthesiol Scand 31:148–153

    CAS  PubMed  Google Scholar 

  • Wilkens JH, Becker A, Wilkens H, Emura M, Riebe-Imre M, Plien K, Schöber S, Tsikas D, Gutzki FM, Frölich JCl (1992) Bioassay of a tracheal smooth muscle-constricting factor released by respiratory epithelial cells. Am J Physiol 263 (Lung Cell Mol Physiol 7):L137–L141

    Google Scholar 

  • Wong WSF, Koh DSK, Koh AHM, Ting WL, Wong PTH (1997) Effects of tyrosine kinase inhibitors on antigen challenge of guinea pig lung in vitro. J Pharmacol Exp Ther 283:131–137

    CAS  PubMed  Google Scholar 

Reactivity of the Isolated Perfused Trachea

  • Baersch G, Frölich JC (1996) A new bioassay to study contractile and relaxant effects of PGE2 on perfused guinea pig trachea. J Pharmacol Toxicol Methods 36:63–68

    CAS  PubMed  Google Scholar 

  • Fedan JS, Frazer DG (1992) Influence of epithelium on the reactivity of guinea pig isolated, perfused trachea to bronchoactive drugs. J Pharm Exp Ther 262:741–750

    CAS  Google Scholar 

  • Fernandes LB, Paternon JW, Goldie RG (1989) Co-axial bioassay of smooth muscle relaxant factor released from guinea-pig tracheal epithelium. Br J Pharmacol 96:117–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hulsman AR, Raatgeep HR, Bonta IL, Stijnen T, Kerrebijn KF, de Jongste JC (1992) The perfused human bronchiolar tube. Characteristics of a new model. J Pharm Toxicol Methods 28:29–34

    Google Scholar 

  • Lewis CA, Broadley KJ (1995) Influence of spasmogen inhalation by guinea pigs upon subsequent demonstration of ovalbumin-induced hyperreactivity in isolated airway tissues. J Pharmacol Toxicol Methods 34:187–198

    Google Scholar 

  • Mitchell HW, Willet KE, Sparrow MP (1989) Perfused bronchial segment and bronchial strip: narrowing vs. isometric force by mediators. J Appl Physiol 66:2704–2709

    CAS  PubMed  Google Scholar 

  • Munakata M, Mitzner W, Menkes H (1988) Osmotic stimuli induce epithelial-dependent relaxation in the guinea pig trachea. J Appl Physiol 64:466–471

    CAS  PubMed  Google Scholar 

  • Munakata M, Huang I, Mitzner W, Menkes H (1989) Protective role of epithelium in the guinea pig airway. J Appl Physiol 66:1547–1552

    CAS  PubMed  Google Scholar 

  • Omari TI, Sparrow MP, Mitchell HW (1993) Responsiveness of human isolated bronchial segments and its relationship to epithelial loss. Br J Clin Pharmacol 35:357–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlovic D, Fournier M, Aubier M, Pariente R (1989) Epithelial vs. serosal stimulation of tracheal muscle: role of epithelium. J Appl Physiol 67:2522–2526

    CAS  PubMed  Google Scholar 

  • Sparrow MP, Mitchell HW (1991) Modulation by the epithelium of the extent of bronchial narrowing produced by substances perfused through the lumen. Br J Pharmacol 103:1160–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Mitzner W, Hirshman C (1991) Role of epithelium in airway smooth muscle responses to relaxant agents. J Appl Physiol 71:1434–1440

    CAS  PubMed  Google Scholar 

Bronchial Perfusion of Isolated Lung

  • Luduena FP, von Euler L, Tullar BF, Lands AM (1957) Effect of the optical isomers of some sympathomimetic amines on the guinea pig bronchioles. Arch Int Pharmacodyn 111:392–400

    CAS  PubMed  Google Scholar 

  • Sollmann T, von Oettingen WF (1928) Bronchial perfusion of isolated lung as a method for studying pharmacologic reactions of bronchiolar muscle. Proc Soc Exp Biol Med 25:692–695

    CAS  Google Scholar 

  • Tainter ML, Peddenm JR, James M (1934) Comparative actions of sympathomimetic compounds: bronchodilator actions in perfused guinea pig lungs. J Pharm Exp Ther 51:371–386

    CAS  Google Scholar 

Vascular and Airway Responses in the Isolated Lung

  • Allen DA, Schertel ER, Bailey JE (1993) Reflex cardiovascular effects of continuous prostacycline administration into an isolated in situ lung in the dog. J Appl Physiol 74:2928–2934

    CAS  PubMed  Google Scholar 

  • Anglade D, Corboz M, Menaouar A, Parker JC, Sanou S, Bayat S, Benchetrit G, Grimbert FA (1998) Blood flow vs. venous pressure effects on filtration coefficient in oleic-acid injured lung. J Appl Physiol 84:1011–1023

    CAS  PubMed  Google Scholar 

  • Bernard CE, Dahlby R, Hoener BA (1997) An isolated perfused lung model with real time data collection and analysis of lung function. J Pharmacol Toxicol Methods 38:41–46

    CAS  PubMed  Google Scholar 

  • Byron PR, Roberts NSR, Ar C (1986) An isolated perfused rat lung preparation for the study of aerosolized drug deposition and absorption. J Pharm Sci 75:168–172

    CAS  PubMed  Google Scholar 

  • Corboz MR, Rivelli MA, Egan RW, Tulshian D, Matasi J, Fawzi AB, Benbow L, Smith-Torhan A, Zhang H, Hey JA (2000) Nociceptin inhibits capsaicin-induced bronchoconstriction in isolated guinea pig lung. Eur J Pharmacol 402:171–179

    CAS  PubMed  Google Scholar 

  • Hauge A (1968) Conditions governing the pressor responses to ventilation hypoxia in isolated perfused rat lungs. Acta Physiol Scand 72:33–44

    CAS  PubMed  Google Scholar 

  • Hendriks JHM, van Schil PEY, Eyskens EJM (1999) Modified technique of isolated left lung perfusion in the rat. Eur Surg Res 31:93–96

    CAS  PubMed  Google Scholar 

  • Lewis CA, Broadley KJ (1995) Influence of spasmogen inhalation by guinea pigs upon subsequent demonstration of ovalbumin-induced hyperreactivity in isolated airway tissues. J Pharmacol Toxicol Methods 34:187–198

    Google Scholar 

  • Nakamura J, Zhang S, Ishikawa N (1987) Role of pulmonary innervation in canine in situ lung-perfusion preparation: a new model of neurogenic pulmonary edema. Clin Exp Pharmacol Physiol 14:535–542

    CAS  PubMed  Google Scholar 

  • Nossaman BD, Feng CJ, Kadowith PJ (1994) Analysis of responses to bradykinin and influence of HOE 140 in the isolated perfused rat lung. Am J Physiol Heart Circ Physiol 266:H2452–2461

    CAS  Google Scholar 

  • Pogrebniak HW, Witt CJ, Terrill R, Kranda K, Travis WD, Rosenberg SA, Pass HI, Graeber GW, Webb WR, Mathisen DJ (1994) Isolated lung perfusion with tumor necrosis factor: a swine model in preparation of human trials. Ann Thorac Surg 57:1477–1483

    CAS  PubMed  Google Scholar 

  • Riley DJ, Kerr JS, Berg RA, Ianni BD, Pietra GG, Edelman NH, Prockop DJ (1981) Prevention of bleomycin-induced pulmonary fibrosis in the hamster by cis-4-hydroxy-l-proline. Am Rev Respir Dis 123:388–392

    CAS  PubMed  Google Scholar 

  • Uhlig S, Heiny O (1995) Measuring the weight of the isolated perfused rat lung during negative pressure ventilation. J Pharmacol Toxicol Methods 33:147–152

    CAS  PubMed  Google Scholar 

  • Uhlig S, Wollin L (1994) An improved setup for the isolated perfused rat lung. J Pharmacol Toxicol Methods 31:85–94

    CAS  PubMed  Google Scholar 

  • Winn R, Nickelson S, Rice CL (1988) Fluid filtration coefficient of isolated goat lungs was unchanged by endotoxin. J Appl Physiol 64:2463–2467

    CAS  PubMed  Google Scholar 

Bronchospasmolytic Activity in Anesthetized Guinea Pigs (Konzett–Rössler method)

  • Belvisi MG, Chung KF, Jackson DM, Barnes PJ (1989a) Opioid modulation of non-cholinergic neural bronchoconstriction in guinea-pig in vivo. Br J Pharmacol 97:1225–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belvisi MG, Ichinose M, Barnes PJ (1989b) Modulation of non-adrenergic, non-cholinergic neural bronchoconstriction in guinea-pig airways via GABAB-receptors. Br J Pharmacol 97:1225–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collier HOJ, Hammond AR, Whiteley B (1963) Anti-anaphylactic action of acetylsalicylate in guinea pig lung. Nature 200:176–178

    CAS  PubMed  Google Scholar 

  • Collier HOJ, James GWL (1967) Humoral factors affecting pulmonary inflation during acute anaphylaxis in the guinea pig in vivo. Br J Pharmacol 30:283–301

    CAS  Google Scholar 

  • De la Motta S (1991) Simultaneous measurement of respiratory and circulatory parameters on anesthetized guinea pigs. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, March, B IV, pp 45–65

    Google Scholar 

  • Döring HJ, Dehnert H (1997) Methoden zur Untersuchung der Atmungsorgane für die experimentelle Pharmakologie und Physiologie. Biomesstechnik-Verlag March GmbH, March, pp 225–288

    Google Scholar 

  • Groeben H, Brown RH (1996) Ipratropium decreases airway size in dogs by preferential M2 muscarinic receptor blockade in vivo. Anesthesiology 85:867–873

    CAS  PubMed  Google Scholar 

  • Kiese M (1935) Pharmakologische Untersuchungen an der glatten Muskulatur der Lunge (insbesondere mit einigen ephedrinartigen Substanzen). Naunyn Schmiedeberg’s. Arch exp Path Pharmakol 178:342–366

    CAS  Google Scholar 

  • Konzett H, Rössler R (1940) Versuchsanordung zu Untersuchungen an der Bronchialmuskulatur. Naunyn-Schmiedeberg’s Arch Exp Path Pharmakol 192:71–74

    Google Scholar 

  • Lau WAK, Rechtman MP, Boura ALA, King RG (1989) Synergistic potentiation by captopril and propranolol of bradykinin-induced bronchoconstriction in the guinea-pig. Clin Exp Pharmacol Physiol 16:849–857

    CAS  PubMed  Google Scholar 

  • Lefort J, Vargaftig BB (1978) Role of platelets in aspirin-sensitive bronchoconstriction in the guinea pig; interactions with salicylic acid. Br J Pharmacol 63:35–42

    Google Scholar 

  • Lundberg JM, Brodin E, Saria A (1983) Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand 119:243–252

    CAS  PubMed  Google Scholar 

  • Marano G, Doria GP (1993) Lung constant-pressure inflation: fluid dynamic factors are the basis of airway overpressure during bronchoconstriction. Pharmacol Res 28:185–192

    CAS  PubMed  Google Scholar 

  • Miura M, Belvisi MG, Barnes PJ (1994) Modulation of non-adrenergic noncholinergic neural bronchoconstriction by bradykinin in anesthetized guinea pigs in vivo. J Pharm Exp Ther 268:482–486

    CAS  Google Scholar 

  • Orr TSC, Blair AMJN (1969) Potentiated reagin response to egg albumin and conalbumin in Nippostrongylus brasiliensis infected rats. Life Sci 8:1073–1077

    CAS  PubMed  Google Scholar 

  • Riley PA, Mather ME, Keogh RW, Eady RP (1987) Activity of nedocromil sodium in mast-cell-dependent reactions in the rat. Int Arch Allergy Appl Immunol 82:108–110

    CAS  PubMed  Google Scholar 

  • Rosenthale ME, Dervinis A (1968) Improved apparatus for measurement of guinea pig lung overflow. Arch Int Pharmacodyn 172:91–94

    Google Scholar 

  • Schiantarelli P, Bongrani S, Papotti M, Cadel S (1982) Investigation of the activity of bronchodilators using a simple but accurate inhalation procedure: forced insufflation. J Pharmacol Methods 8:9–17

    CAS  PubMed  Google Scholar 

  • Schliep HJ, Schulze E, Harting J, Haeusler G (1986) Antagonistic effects of bisopropol on several β-adrenoceptor-mediated actions in anesthetized cats. Eur J Pharmacol 123:253–261

    CAS  PubMed  Google Scholar 

Effect of Arachidonic Acid or PAF on Respiratory Function In Vivo

  • Kagoshima M, Tomomatsu N, Iwahisha Y, Yamaguchi S, Matsuura M, Kawakami Y, Terasawa M (1997) Suppressive effects of Y-24180, a receptor antagonist to platelet activating factor (PAF), on antigen-induced asthmatic responses in guinea pigs. Inflamm Res 46:147–153

    CAS  PubMed  Google Scholar 

  • Lefort J, Vargaftig BB (1978) Role of platelets in aspirin-sensitive bronchoconstriction in the guinea pig; interactions with salicylic acid. Br J Pharmacol 63:35–42

    Google Scholar 

  • Mead J (1960) Control of respiratory frequency. J Appl Physiol 15:325–336

    Google Scholar 

  • Pauluhn J (1994) Validation of an improved nose-only exposure system for rodents. J Appl Toxicol 14:55–63

    CAS  PubMed  Google Scholar 

  • Pauluhn J (2004) Acute inhalation studies with irritant aerosols: technical issues and relevance for risk characterization. Arch Toxicol 78:243–251

    CAS  PubMed  Google Scholar 

  • Vargaftig BB, Lefort J, Prancan AV, Chignard M, Benveniste J (1979) Platelet-lung in vivo interactions: an artifact of a multipurpose model? Haemostasis 8:171–182

    CAS  PubMed  Google Scholar 

Bronchial Hyperreactivity

  • Beume R, Kilian U, Mussler K (1985) Die Prüfung bronchospasmolytischer Substanzen am wachen Meerschweinchen. Atemw – Lungenkrh 11:342–345

    Google Scholar 

  • Bolser DC, DeGennaro FC, O’Reilly S, Hey JA, Chapman RW (1995) Pharmacological studies of allergic cough in the guinea pig. Eur J Pharmacol 277:159–164

    CAS  PubMed  Google Scholar 

  • Brigham KL, Meyrick B (1986) Endotoxin and lung injury: state of the art review. Am Rev Respir Dis 133:913–927

    CAS  PubMed  Google Scholar 

  • Chiba Y, Misawa M (1993) Strain differences in change in airway hyperresponsiveness after repeated antigenic challenge in three strains of rats. Gen Pharmacol 24:1265–1272

    CAS  PubMed  Google Scholar 

  • Chiba Y, Misawa M (1995) Characteristics of muscarinic cholinoceptors in airways of antigen-induced airway hyperresponsive rats. Comp Biochem Physiol 111C:351–357

    CAS  Google Scholar 

  • Christman BW, Lefferts PL, Snapper JR (1987) Effect of a platelet activating factor receptor antagonist (SRI 63–441) on the sheep’s response to endotoxin. Am Rev Respir Dis 135:A82

    Google Scholar 

  • Eady RP (1986) The pharmacology of nedocromil sodium. Eur J Respir Dis 69(Suppl 147):112–119

    Google Scholar 

  • Elwood W, Lötvall JO, Barnes PJ, Chung KF (1992) Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis 145:1289–1294

    Google Scholar 

  • Folkerts G, van der Linde HJ, Nijkamp FP (1995) Virus-induced airway hyperresponsiveness in guinea pigs is related to a deficiency in nitric oxide. J Clin Invest 95:26–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer AD, Yarkony KA, Jacoby DB (1994) The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea pigs. Br J Pharmacol 112:588–594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer AD, Costello RW, Yost BL, Lobb RR, Tedder TF, Steeber DA (1997) Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99:2036–2044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris JO, Bice D, Salvaggio JE (1976) Cellular and humoral bronchopulmonary immune response of rabbits immunized with thermophilic actinomyces antigen. Am Rev Respir Dis 114:29–43

    CAS  PubMed  Google Scholar 

  • Hatzelmann A, Haefner D, Beume R, Schudt C (1996) Automatic leukocyte differentiation in bronchoalveolar lavage fluids of guinea pigs and Brown-Norway rats. J Pharmacol Toxicol Methods 35:91–99

    CAS  PubMed  Google Scholar 

  • Herxheimer H (1956) Bronchoconstrictor agents and their antagonists in the intact guinea pig. Arch Int Pharmacodyn Ther 106:371–380

    CAS  PubMed  Google Scholar 

  • Hutchinson AA, Hinson JM, Brigham KL, Snapper JL (1983) Effect of endotoxin on airway responsiveness to aerosol histamine in sheep. J Appl Physiol 54:1463–1468

    Google Scholar 

  • Kallos P, Pagel W (1937) Experimentelle Untersuchungen über Asthma bronchiale. Acta Med Scand 91:292–305

    Google Scholar 

  • Kuss H, Hoefgen N, Johanssen S, Kronbach T, Rundfeldt C (2003) In vivo efficacy in airway disease models of N-(3,5-dichloro-pyrid-4-yl)-[1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl]-glycolic acid amide (AWD 12–281), a selective phosphodiesterase 4 inhibitor for inhaled administration. J Pharmacol Exp Ther 307:373–385

    CAS  PubMed  Google Scholar 

  • Minshall EM, Riccio MM, Herd CM, Douglas GJ, Seeds EAM, McKennif MG, Sasaki M, Spina D, Page CP (1993) A novel animal model for investigating persistent airway hyperresponsiveness. J Pharmacol Toxicol Methods 30:177–188

    CAS  PubMed  Google Scholar 

  • Okada S, Inoue H, Yamauchi K, Iijima H, Okhawara Y, Takishima T, Shirato K (1995) Potential role of interleukin-1 in allergen-induced late asthmatic reactions in guinea pigs: suppressive effect of interleukin-1 receptor antagonist on late asthmatic reaction. J Allergy Clin Immunol 95:1236–1245

    CAS  PubMed  Google Scholar 

  • Olsson OAT (1971) Histamine-induced bronchospasm in unanaesthetized guinea pigs. Acta Allergol 26:438–447

    CAS  PubMed  Google Scholar 

  • Pahl A, Zjang M, Kuss H, Szelenyi I, Brune K (2002) Regulation of IL-13 synthesis in human lymphocytes: implications for asthma therapy. Br J Pharmacol 135:1915–1926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson R, Suszko IM, Harris KE (1983) The in vivo transfer of antigen-induced airway reactions by bronchial lumen cells. J Clin Invest 62:519–524

    Google Scholar 

  • Pons R, Santamarïa P, Suchankova J, Cortijo J, Morcillo EJ (2000) Effects of inhaled glaucine on pulmonary responses to antigen in sensitized guinea pigs. Eur J Pharmacol 397:187–195

    CAS  PubMed  Google Scholar 

  • Pritchard DI, Eady PR, Harper ST, Jackson DM, Orr TSC, Richards IM, Trigg S, Wells E (1983) Laboratory infection of primates with Ascaris suum to provide a model of allergic bronchoconstriction. Clin Exp Immunol 54:469–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raeburn D, Underwood SL, Villamil ME (1992) Techniques for drug delivery to the airways, and the assessment of lung functions in animal models. J Pharmacol Toxicol Methods 27:143–159

    CAS  PubMed  Google Scholar 

  • Reynolds HY (1991) Immunologic system in the respiratory tract. Physiol Rev 71:1117–1133

    CAS  PubMed  Google Scholar 

  • Richards IM, Dixon M, Jackson DM, Vendy K (1986) Alternative modes of action of cromoglycate. Agents Actions 18:294–300

    CAS  PubMed  Google Scholar 

  • Rosenthale ME, Dervinis A (1968) Improved apparatus for measurement of guinea pig lung overflow. Arch Int Pharmacodyn Ther 172:91–94

    Google Scholar 

  • Rosenthale ME, Dervinis A, Begany AJ, Lapidus M, Gluckmann MI (1970) Bronchodilator activity of prostaglandin E2 when administered by aerosol to three species. Experientia 26:1119–1121

    CAS  PubMed  Google Scholar 

  • Rylander R, Marchat B (1988) Modulation of acute endotoxin pulmonary inflammation by a corticosteroid. J Clin Lab Immunol 27:83–86

    CAS  PubMed  Google Scholar 

  • Santing RE, Hoekstra Y, Pasman Y, Zaagsma J, Meurs H (1994) The importance of eosinophil activation for the development of allergen-induced bronchial hyperreactivity in conscious, unrestrained guinea pigs. Clin Exp Allergy 24:1157–1163

    CAS  PubMed  Google Scholar 

  • Schmiedl A, Hoymann HG, Ochs M, Menke A, Fehrenbach A, Krug N, Tschernig T, Höhlfeld JM (2003) Increase of inactive intra-alveolar surfactant subtypes in lungs of asthmatic Brown Norway rats. Virchows Arch 442:56–65

    CAS  PubMed  Google Scholar 

  • Snapper JR, Christman BW (1989) Models of acute pulmonary inflammation. In: Pharmacological methods in the control of inflammation. Liss, New York, pp 255–281

    Google Scholar 

  • Tarayre JP, Aliaga M, Barbara M, Tisseyre N, Vieu S, Tisne-Versailles J (1990) Model of bronchial hyperreactivity after active anaphylactic shock in conscious guinea pigs. J Pharmacol Methods 23:13–19

    CAS  PubMed  Google Scholar 

  • Ufkes JGR, Ottenhof M, Aalberse RC (1983) A new method for inducing fatal, IgE mediated, bronchial and cardiovascular anaphylaxis in the rat. J Pharmacol Methods 9:175–181

    CAS  PubMed  Google Scholar 

Body Plethysmography and Respiratory Parameters After Histamine-Induced Bronchoconstriction in Anesthetized Guinea Pigs

  • Agrawal KP (1981) Specific airway conductance in guinea pigs: normal values and histamine induced fall. Respir Physiol 43:23–30

    CAS  PubMed  Google Scholar 

  • Amdur MO, Mead J (1958) Mechanics of respiration in unanesthetized guinea pigs. Am J Physiol 192:364–368

    CAS  PubMed  Google Scholar 

  • Arch JRS, Buckle DR, Bumstead J, Clarke GD, Taylor JF, Taylor SG (1988) Evaluation of the potassium channel activator cromakalim (BRL 34915) as a bronchodilator in the guinea pig: comparison with nifedipine. Br J Pharmacol 95:763–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ball DI, Coleman RA, Hartley RW, Newberry A (1991) A novel method for the evaluation of bronchoactive agents in the conscious guinea pig. J Pharmacol Methods 26:187–202

    CAS  PubMed  Google Scholar 

  • Blümcke S, Rode J, Niedorf HR (1967) Eine einfache Methode der Körper-Plethysmographie der Ratte. Naturwiss 54:343–344

    PubMed  Google Scholar 

  • Chand N, Nolan K, Pillar J, Lomask M, Diamantis W, Sofia RD (1993) Aeroallergen-induced dyspnea in freely moving guinea pigs: quantitative measurement by bias flow ventilated whole body plethysmography. Allergy 48:230–235

    CAS  PubMed  Google Scholar 

  • Chapman RW, Danko G, Siegel MI (1985) Effect of propranolol on pulmonary function and bronchoconstrictor responsiveness in guinea pigs and rats. Pharmacol Res Commun 17:149–163

    CAS  PubMed  Google Scholar 

  • Danko G, Chapman RW (1988) Simple, noninvasive method to measure antibronchoconstrictor activity of drugs in conscious guinea pigs. J Pharmacol Methods 19:165–173

    CAS  PubMed  Google Scholar 

  • Döring HJ, Dehnert H (1997) Methoden zur Untersuchung der Atmungsorgane für die experimentelle Pharmakologie und Physiologie. Biomesstechnik-Verlag March GmbH, March, pp 267–288

    Google Scholar 

  • Elliott RD, Fitzgerald MF, Clay TP (1991) A whole body plethysmograph for small animals. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, March, pp 66–71

    Google Scholar 

  • Englert CE, Wirth K, Gehring D, Fürst U, Albus U, Scholz W, Rosenkranz B, Schölkens BA (1992) Airway pharmacology of the potassium channel opener, HOE 234, in guinea pigs: in vitro and in vivo studies. Eur J Pharmacol 210:69–75

    Google Scholar 

  • Finney MJ, Forsberg KI (1994) Quantification of nasal involvement in a guinea pig plethysmograph. J Appl Physiol 76:1432–1438

    CAS  PubMed  Google Scholar 

  • Glaab T, Daser A, Brain A, Neuhaus-Steinmetz U, Fabel H, Alarie Y, Renz H (2001) Tidal midexpiratory flow as a measure of airway hyperresponsiveness in allergic mice. Am J Physiol 280:L565–L573

    Google Scholar 

  • Griffith-Johnson DA, Nicholl PJ, McDermott M (1988) Measurement of specific airway conductance in guinea pigs. A noninvasive method. J Pharmacol Methods 19:233–242

    Google Scholar 

  • Hey JA, Mingo G, Bolsner DC, Kreutner W, Krobatsch D, Chapman RW (1995) Respiratory effects of baclofen and 3-aminopropylphosphinic acid in guinea pigs. Br J Pharmacol 114:735–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Höbel M, Maroske D, Eichler O (1971) Eine einfache Methode zur Bestimmung des Atemminutenvolumens von Ratten und Meerschweinchen. Arch Int Pharmacodyn Ther 194:371–374

    PubMed  Google Scholar 

  • James JT, Infiesto BP (1983) Concurrent measurement of respiratory and metabolic parameters in rats during exposure to a test vapor: respiratory stress test. J Pharmacol Methods 10:283–292

    CAS  PubMed  Google Scholar 

  • Kisagawa K, Saitoh K, Tanizaki A, Ohkubo K, Irino O (1984) A new method for measuring respiration in the conscious mouse. J Pharmacol Methods 12:183–189

    Google Scholar 

  • Kokka N, Elliott HW, Way L (1965) Some effects of morphine on respiration and metabolism in rats. J Pharmacol Exp Ther 148:386–392

    CAS  PubMed  Google Scholar 

  • Linton P (1991) Improvements incorporated in the animal whole-body plethysmograph after Elliott et al. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, March, pp 72–76

    Google Scholar 

  • Murphy DJ, Renninger JP, Gossett KA (1998) A novel method for chronic measurement of pleural pressure in conscious rats. J Pharmacol Toxicol Methods 39:137–141

    CAS  PubMed  Google Scholar 

  • Paré PD, Michoud MC, Hogg JC (1976) Lung mechanics following antigen challenge of Ascaris suum-sensitive rhesus monkeys. J Appl Physiol 41:668–676

    PubMed  Google Scholar 

  • Pennock BE, Cox CP, Rogers RM, Cain WA, Wells JH (1979) A noninvasive technique for measurements of changes in specific airway resistance. J Appl Physiol 46:399–406

    CAS  PubMed  Google Scholar 

  • Schlegelmilch R (1991) Respiratory measurements on conscious guinea pigs using a double chamber plethysmograph box with aerosol challenge. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, March, pp 136–140

    Google Scholar 

  • Schlenker EH (1984) An evaluation of ventilation in dystrophic Syrian hamsters. J Appl Physiol 56:914–921

    CAS  PubMed  Google Scholar 

  • Schlenker EH, Metz TJ (1989) Ventilatory responses of dystrophic and control hamsters to naloxone. Pharmacol Biochem Behav 34:681–684

    CAS  PubMed  Google Scholar 

  • Schütz E (1960) Bestimmung der Atemgröße narkotisierter Ratten. Arzneim Forsch/Drug Res 10:52–53

    Google Scholar 

  • Sinnett EE, Jackson AC, Leith DE, Butler JP (1981) Fast integrated flow plethysmograph for small mammals. J Appl Physiol 50:1104–1110

    CAS  PubMed  Google Scholar 

  • Wasserman MA, Griffin RL (1977) Thromboxane B2 – comparative bronchoactivity in experimental systems. Eur J Pharmacol 46:303–313

    CAS  PubMed  Google Scholar 

  • Wegner CD, Jackson AC, Berry JD, Gillepsie JR (1984) Dynamic respiratory mechanics in monkeys measured by forced oscillations. Respir Physiol 55:47–61

    CAS  PubMed  Google Scholar 

  • Wirth K, Hock FJ, Albus U, Linz W, Alpermann HG, Anagnostopoulos H, Henke S, Breipohl W, Knolle J, Schölkens BA (1991) HOE 140, a new potent and long acting bradykinin-antagonist: in vivo studies. Br J Pharmacol 102:774–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wirth KJ, Gehring D, Schölkens BA (1993) Effect of HOE 140 on bradykinin-induced bronchoconstriction in anesthetized guinea pigs. Am Rev Respir Dis 148:702–706

    CAS  PubMed  Google Scholar 

Pneumotachography in Anesthetized Guinea Pigs

  • De la Motta S (1991) Simultaneous measurement of respiratory and circulatory parameters on anesthetized guinea pigs. Seventh Freiburg focus on biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, March, B IV, pp 45–65

    Google Scholar 

  • Döring HJ (1991) Historical review of methods for the measurement and evaluation of respiratory parameters, in particular airway resistance. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, March, B IV, pp 17–29

    Google Scholar 

  • Döring HJ, Dehnert H (1997) Methoden zur Untersuchung der Atmungsorgane für die experimentelle Pharmakologie und Physiologie. Biomesstechnik-Verlag March GmbH, March, pp 171–211

    Google Scholar 

  • Fleisch A (1925) Der Pneumotachograph; ein Apparat zur Geschwindigkeitsregistrierung der Atemluft. Pflügers Arch 209:713–722

    Google Scholar 

  • Gad J (1880) Die Regulierung der normalen Athmung. Arch Anat Physiol, Physiol Abthlg:1–32

    Google Scholar 

  • Gildemeister M (1922) Über die Messung der Atmung mit Gasuhr und Ventilen. Pflugers Arch 195:96–100

    Google Scholar 

  • Gozzard N, Herd CM, Blake SM, Holbrook M, Hughes B, Higgs GA, Page CP (1996) Effects of theophylline and rolipram on antigen-induced airway responses in neonatally immunized rabbits. Br J Pharmacol 117:1405–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hastings SG (1990a) An integrated system for data acquisition and analysis. Sixth Freiburg Focus on Biomeasurement (FFB6) Publ. by Biomesstechnik Verlag, March, pp 206–209

    Google Scholar 

  • Hastings SG (1990b) Typical data reduction process. Sixth Freiburg Focus on Biomeasurement (FFB6) Publ. by Biomesstechnik Verlag, March, G IV 1–27

    Google Scholar 

  • Jaquet A (1908) Zur Mechanik der Atembewegungen. Arch exp Path Pharmakol, Suppl, Festschr. O Schmiedeberg:309–316

    Google Scholar 

  • Lai YL, Diamond L (1986) Comparison of five methods of analyzing respiratory pressure-volume curves. Respir Physiol 66:147–155

    CAS  PubMed  Google Scholar 

  • Lomask MR (1987) BUXCO respiratory mechanics analyzer for non invasive measurements in conscious animals. Third Freiburg Focus on Biomeasurement (FFB3) Publ. by Biomesstechnik Verlag, March, pp 212–226

    Google Scholar 

  • Lorino AM, Bénichou M, Macquin-Mavier I, Lorino H, Harf A (1988) Respiratory mechanics for assessment of histamine bronchopulmonary reactivity in guinea pigs. Respir Physiol 73:155–162

    CAS  PubMed  Google Scholar 

  • Lorino AM, Jarreau PH, Sartene R, Mathieu M, Macquin-Mavier I, Harf A (1993) Bronchoconstriction-induced hyperinflation assessed by thoracic area measurement in guinea pigs. Am Rev Respir Dis 147:392–397

    CAS  PubMed  Google Scholar 

  • O’Neil RM, Ashack RJ, Goodman FR (1981) A comparative study of respiratory responses to bronchoactive agents in rhesus and cynomolgus monkeys. J Pharmacol Methods 5:267–273

    PubMed  Google Scholar 

  • Pflüger E (1882) Das Pneumonometer. Pflugers Arch 29:244–246

    Google Scholar 

  • Rayburn DB, Mundie TG, Phillips YY (1989) Computer-controlled large-animal pulmonary function system. Comput Methods Progrom Biomed 28:1–9

    CAS  Google Scholar 

  • Rohrer F (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigungen des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pflugers Arch 162:225–299

    Google Scholar 

  • Santing RE, Meurs H, van der Mark TW, Remie R, Oosterom WC, Brouwer F, Zaagsma J (1992) A novel method to assess airway function parameters in chronically instrumented, unrestrained guinea-pigs. Pulmon Pharmacol 5:265–272

    CAS  Google Scholar 

  • Neergaard K, Wirz K (1927) Über eine Methode zu Messung der Lungenelastizität am lebenden Menschen, insbesondere beim Emphysem. Z Klin Med 105:35–50

    Google Scholar 

  • Zwaardemaker H, Ouwehand CD (1904) Die Geschwindigkeit des Athemstromes und das Athemvolum des Menschen. Arch Anat Physiol, Physiol Abthlg. Suppl:241–263

    Google Scholar 

Airway Microvascular Leakage

  • Boschetto P, Roberts NM, Rogers DF, Barnes PJ (1989) Effect of antiasthma drugs on microvascular leakage in guinea pig airways. Am Rev Respir Dis 139:416–421

    CAS  PubMed  Google Scholar 

  • Herbst C, Tippler B, Shams H, Simmet T (1995) A role of endothelin in bicuculline-induced neurogenic pulmonary oedema in rats. Br Pharmacol 115:753–760

    CAS  Google Scholar 

  • Rogers DF, Boschetto P, Barnes PJ (1989) Plasma exsudation: correlation between Evans Blue dye and radiolabelled albumin in guinea-pig airways in vivo. J Pharmacol Methods 21:309–315

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Elwood W, Barnes PJ, Chung FK (1992) Effect of Hoe 140, a new bradykinin receptor antagonist, on bradykinin- and platelet-activating factor-induced bronchoconstriction and airway microvascular leakage in guinea pig. Eur J Pharmacol 213:367–373

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Sun J, Barbnes PJ, Chung KF (1994) Effect of a bradykinin receptor antagonist, HOE 140, against bradykinin- and vagal stimulation-induced airway responses in the guinea-pig. Eur J Pharmacol 251:137–142

    CAS  PubMed  Google Scholar 

  • Xu ZH, Shimakura K, Yamamoto T, Wang LM, Mineshita S (1998) Pulmonary edema induced by angiotensin I in rats. Jpn J Pharmacol 76(1):51–56

    CAS  PubMed  Google Scholar 

Isolated Larynx In Situ

  • Bartlett D, Remmers JE, Gautier H (1973) Laryngeal regulation of respiratory airflow. Respir Physiol 18:194–202

    PubMed  Google Scholar 

  • González-Barón S, Dawid-Miner MS, Lara JP, Clavijo E, Aguirre JA (1989) Changes in laryngeal resistance and bronchial tonus. Rev Esp Fisiol 45(Suppl):191–196

    PubMed  Google Scholar 

  • Inagi K, Connor NP, Ford CN, Schultz E, Rodriquez AA, Bless DM, Pasic D, Heisey DM (1998) Physiologic assessment of botulinum toxin effects in the rat larynx. Laryngoscope 108:1048–1054

    CAS  PubMed  Google Scholar 

  • O’Halloran KD, Curran AK, Bradford A (1994) Ventilatory and upper-airway resistance response to upper airway cooling and CO2 in anesthetized rats. Pflüger’s Arch 429:262–266

    Google Scholar 

  • Stransky A, Szereda-Przestazewska M, Widdicombe J (1973) The effect of lung reflexes on laryngeal resistance and motoneuron discharge. J Physiol 231:517–518

    Google Scholar 

  • Wang ZH, Bradford A, O’Regan RG (1999) Effects of CO2 and H+ on laryngeal receptor activity in the perfused larynx of anesthetized cats. J Physiol (Lond) 519:591–600

    CAS  Google Scholar 

  • Willette RN, Krieger AJ, Sapru HN (1982a) Pulmonary opiate receptor activation evokes a cardiorespiratory effect. Eur J Pharmacol 78:61–70

    CAS  PubMed  Google Scholar 

  • Willette RN, Krieger AJ, Sapru HN (1982b) Opioids increase laryngeal resistance and motoneuron activity in the recurrent laryngeal nerve. Eur J Pharmacol 80:57–63

    CAS  PubMed  Google Scholar 

  • Willette RN, Evans DY, Dooley BM (1987) The in situ isolated larynx for evaluation peripheral opiate receptor antagonists. J Pharmacol Methods 17:15–25

    CAS  PubMed  Google Scholar 

Treatment of Asthma

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    CAS  PubMed  Google Scholar 

  • Banner KH, Paul W, Page CP (1996) Ovalbumin challenge following immunization elicits recruitment of eosinophils but not hyperresponsiveness in guinea pigs: time course and relationship to eosinophil activation status. Pulmon Pharmacol 9:179–187

    CAS  Google Scholar 

  • Belvisi MG, Bundschuh DS, Stoeck M, Wicks S, Underwood S, Battram CH, Haddad EB, Webber SE, Foster ML (2005) Preclinical profile of ciclesonide, a novel corticosteroid for the treatment of asthma. J Pharmacol Exp Ther 314:568–574

    CAS  PubMed  Google Scholar 

  • Birrell MA, McCluskie K, el Haddad B, Battram CH, Webber SE, Foster ML, Yacoub MH, Belvisi MG (2003) Pharmacological assessment of the nitric-oxide synthase isoform involved in eosinophilic inflammation in a rat model of sephadex-induced airway inflammation. J Pharmacol Exp Ther 304:1285–1291

    CAS  PubMed  Google Scholar 

  • Blesa S, Cortijo J, Martinez-Losa M, Mata M, Seda E, Santangelo F, Morcillo EJ (2002) Effectiveness of oral N-acetylcysteine in a rat experimental model of asthma. Pharmacol Res 45:135–140

    CAS  PubMed  Google Scholar 

  • Boskabady MH, Zarei A (2004) Increased tracheal responsiveness to beta-adrenergic agonist and antagonist in ovalbumin-sensitized guinea pigs. Pharmacology 71:73–79

    CAS  PubMed  Google Scholar 

  • Chan SC, Hanifin JM, Holden CA, Thompson WJ, Hirshman CA (1985) Elevated leukocyte phosphodiesterase as a basis for depressed cyclic adenosine monophosphate responses in the Basenji greyhound dog model of asthma. J Allergy Clin Immunol 76(2 Pt 1):148–158

    CAS  PubMed  Google Scholar 

  • Cheng G, Ueda T, Sugiyama K, Toda M, Fukuda T (2001) Compositional and functional changes of pulmonary surfactant in a guinea pig model of chronic asthma. Respir Med 95:180–186

    CAS  PubMed  Google Scholar 

  • Churg A, Dai J, Zay K, Karsan A, Hendricks S, Yee C, Martin R, MacKenzie R, Xie C, Zhang L, Shapiro S, Wright JL (2001) Alpha-1 antitrypsin and a broad metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab Invest 81:1119–1131

    CAS  PubMed  Google Scholar 

  • Darowski MJ, Hannon VM, Hirshman CA (1989) Corticosteroids decrease airway hyperresponsiveness in the Basenji-Greyhound dog model of asthma. J Appl Physiol 66:1120–1126

    CAS  PubMed  Google Scholar 

  • De Sanctis GT, Drazen JM (1997) Genetics of native airway responsiveness in mice. Am J Respir Crit Care Med 156:S82–S88

    PubMed  Google Scholar 

  • Elwood W, Lotvall JO, Barnes PJ, Chung KF (1992) Effect of dexamethasone and cyclosporine A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis 145:1289–1294

    Google Scholar 

  • Emala C, Black C, Curry C, Levine MA, Hirshman CA (1993) Impaired beta-adrenergic receptor activation of adenylyl cyclase in airway smooth muscle in the basenji-greyhound dog model of airway hyperresponsiveness. Am J Respir Cell Mol Biol 8:668–675

    CAS  PubMed  Google Scholar 

  • Emala CW, Aryana A, Hirshman CA (1996) Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness. Decreased numbers of high affinity beta-receptors. Br J Pharmacol 118:2009–2016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujimura M, Amamiya M, Myou S, Mizuguchi M, Matsuda T (1997) A guinea-pig model of ultrasonically nebulized distilled water-induced bronchoconstriction. Eur Respir J 10:2237–2242

    CAS  PubMed  Google Scholar 

  • Glaab T, Hoymann HG, Hohlfeld JM, Korolewitz R, Hecht M, Alarie Y, Tschernig T, Braun A, Krug N, Fabel H (2002) Noninvasive measurement of midexpiratory flow indicates bronchoconstriction in allergic rats. J Appl Physiol 93:1208–1214

    PubMed  Google Scholar 

  • Hammad H, Jan de Heer H, Soullié T, Angeli V, Trottein F, Hoogsteden HC, Lambrecht BN (2004) Activation of peroxisome proliferator-activated receptor-γ in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol 164:263–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirshman CA, Downes H (1981) Basenji-Greyhound dog model of asthma: influence of atropine on antigen-induced bronchoconstriction. J Appl Physiol 50:76–765

    Google Scholar 

  • Hirshman CA, Malley A, Downes H (1980) Basenji-Greyhound dog model of asthma: reactivity to Ascaris suum, citric acid, and methacholine. J Appl Physiol 49:953–957

    CAS  PubMed  Google Scholar 

  • Huang TJ, Eynott P, Salmon M, Nicklin PL, Chung KF (2002) The effect of topical immunomodulators on acute allergic inflammation and bronchial hyperresponsiveness in sensitized rats. Eur J Pharmacol 437:187–194

    CAS  PubMed  Google Scholar 

  • Ikezono K, Kamata M, Mori T (2005) Adrenal influences on the inhibitory effects of procaterol, a selective β2-adrenoceptor agonist, on antigen-induced airway microvascular leakage and bronchoconstriction in guinea pigs. Pharmacology 73:209–215

    CAS  PubMed  Google Scholar 

  • Iwasaki T, Tanaka A, Itakura A, Yamashita N, Ohta K, Matsuda H, Onuma M (2001) Atopic NC/Nga mice as a model for allergic asthma: severe allergic responses by single intranasal challenge with protein antigen. J Vet Med Sci 63:413–419

    CAS  PubMed  Google Scholar 

  • Lambrecht BN, Pauwels RA, de St. Groth BF (2000) Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J Immunol 164:2937–2946

    CAS  PubMed  Google Scholar 

  • Larsen CP, Regal JF (2002) Trimellitic anhydride (TMA) dust induces airway obstruction and eosinophilia in non-sensitized guinea pigs. Toxicology 178:89–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence TE, Millecchia LL, Fedan JS (1998) Fluticasone propionate and pentamidine isethionate reduce airway hyperreactivity, pulmonary eosinophilia and pulmonary dendritic cell response in a guinea pig model of asthma. J Pharmacol Exp Ther 284:222–227

    CAS  PubMed  Google Scholar 

  • Li Y, Martin LD, Minnicozzi M, Greenfeder S, Fine J, Pettersen CA, Chorley B, Adler KB (2001) Enhanced expression of mucin genes in a guinea pig model of allergic asthma. Am J Respir Cell Mol Biol 25:644–651

    CAS  PubMed  Google Scholar 

  • Liu M, Wang L, Holm BA, Enhorning G (1997) Dysfunction of guinea pig pulmonary surfactant and type II pneumocytes after repetitive challenge with aerosolized ovalbumin. Clin Exp Allergy 27:802–807

    CAS  PubMed  Google Scholar 

  • Lutz MB, Kukutsch N, Ogilvie ALJ, Rössner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92

    CAS  PubMed  Google Scholar 

  • Mauser PJ, Pitman AM, Fernandez X, Foran SK, Adams GK 3rd, Kreutner W, Egan RW, Chapman RW (1995) Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 152:467–472

    CAS  PubMed  Google Scholar 

  • Misawa M, Sugiyama Y (1993) An airway hyperresponsiveness model in rat allergic asthma. Arerugi 42:107–114

    CAS  PubMed  Google Scholar 

  • Misawa M, Takenouchi K, Abiru T, Yoshino Y, Yanaura S (1987) Strain differences in an allergic asthma model in rats. Jpn J Pharmacol 45:63–68

    CAS  PubMed  Google Scholar 

  • Mueller C, Weaver V, Van den Heuvel JP, August A, Cantorna MT (2003) Peroxisome proliferators-activated receptor γ ligands attenuate immunological symptoms of allergic asthma. Arch Biochem Biophys 418:186–196

    CAS  PubMed  Google Scholar 

  • Mukaiyama O, Morimoto K, Nosaka E, Takahashi S, Yamashita M (2004) Involvement of enhanced neurokinin NK3 receptor expression in the severe asthma guinea pig model. Eur J Pharmacol 498:287–294

    CAS  PubMed  Google Scholar 

  • Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of CD4 + CD8 + TcRIo thymocytes in vivo. Science 250:1720–1723

    CAS  PubMed  Google Scholar 

  • Nishitsuji M, Fujimura M, Oribe Y, Nakao S (2004) A guinea pig model of cough variant asthma and role of tachykinins. Exp Lung Res 30:723–737

    CAS  PubMed  Google Scholar 

  • Nonaka T, Mitsuhashi H, Takahashi K, Sugiyama H, Kishimoto T (2000) Effect of TEI-9874, an inhibitor of immunoglobulin E production, on allergen-induced asthmatic model in rats. Eur J Pharmacol 402:287–295

    CAS  PubMed  Google Scholar 

  • Norris CR, Byerly JR, Decile KC, Berghaus RD, Walby WF, Schelegle ES, Hyde DM, Gershwin LJ (2003) Allergen-specific IgG and IgA, in serum and bronchoalveolar lavage fluid in a model of experimental feline asthma. Vet Immunol Immunopathol 96:119–127

    CAS  PubMed  Google Scholar 

  • Norris-Reinero CR, Decile KC, Berghaus RD, Williams KJ, Leutenegger CM, Walby WF, Schelegle ES, Hyde DM, Gershwin LJ (2004) An experimental model of allergic asthma in cats sensitized to house dust mite and Bermuda grass allergen. Int Arch Allergy Immunol 135:117–131

    CAS  PubMed  Google Scholar 

  • Patterson R, Harris KE (1981) Inhibition of immunoglobulin E-mediated, antigen-induced monkey asthma and skin reactions by 5,8,11,14-eicosotetraynoic acid. J Allergy Clin Immunol 67:146–152

    CAS  PubMed  Google Scholar 

  • Patterson R, Harris KE (1990) Rhesus monkey airway responses to substance P. Int Arch Allergy Appl Immunol 91:374–379

    CAS  PubMed  Google Scholar 

  • Patterson R, Harris KE (1992) IgE-mediated rhesus monkey asthma: natural history and individual animal variation. Int Arch Allergy Immunol 97:154–159

    CAS  PubMed  Google Scholar 

  • Patterson R, Irons JS, Harris KE (1975) Potentiating effect of D2O on the ascaris-induced, reagin-mediated model of asthma in the Rhesus monkey studied by a double aerosolized antigen challenge technique. Int Allergy Appl Immunol 48:412–421

    CAS  Google Scholar 

  • Redman TK, Rudolph K, Barr EB, Bowen LE, Muggenburg BA, Bice DE (2001) Pulmonary immunity to ragweed in a Beagle dog model of allergic asthma. Exp Lung Res 27:433–451

    CAS  PubMed  Google Scholar 

  • Regal JF, Fraser DG, Weeks CE, Greenberg NA (2000) Dietary phytoestrogens have anti-inflammatory activity in a guinea pig model of asthma. Proc Soc Exp Biol Med 223:372–378

    CAS  PubMed  Google Scholar 

  • Regal JF, Mohrman ME, Sailstadt DM (2001) Trimellitic anhydride-induced eosinophilia in a mouse model of occupational asthma. Toxicol Appl Pharmacol 175:234–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagara H, Ra C, Okada T, Shinohara S, Fukuda T, Okumura K, Makino S (1996) Sialyl Lewis X analog inhibits eosinophil accumulation and late asthmatic response in a guinea pig model of asthma. Int Arch Allergy Immunol 111(Suppl 1):32–36

    CAS  PubMed  Google Scholar 

  • Sagara H, Matsuda H, Wada N, Yagita H, Fukuda T, Okumara K, Makino S, Ra C (1997) A monoclonal antibody against very late activation antigen-4 inhibits eosinophil accumulation and late asthmatic response in a guinea pig model of asthma. Int Arch Allergy Immunol 112:287–294

    CAS  PubMed  Google Scholar 

  • Santing RE, de Boer J, Rohof A, van der Zee NM, Zaagsma J (2001) Bronchodilatory and anti-inflammatory properties of inhaled selective phosphodiesterase inhibitors in a guinea pig model of allergic asthma. Eur J Pharmacol 429:335–344

    CAS  PubMed  Google Scholar 

  • Santives T, Roska A, Hensley GT, Moore VL, Fink JV, Abromoff P (1976) Immunologically induced lung disease in guinea pig. J Allergy Clin Immunol 57:582–594

    CAS  PubMed  Google Scholar 

  • Smith WG, Thompson JM, Kowalski DL, McKeam JP (1996) Inhaled misoprostol blocks guinea pig antigen-induced bronchoconstriction and airway inflammation. Am J Respir Crit Care Med 154(2 Pt1):295–299

    CAS  PubMed  Google Scholar 

  • Steerenberg PA, Dormans JA, van Doorn CC, Middendorp S, Vos JG, van Loveren H (1999) A pollen model in the rat for testing adjuvant activity of air pollution components. Inhal Toxicol 11:1109–1122

    CAS  PubMed  Google Scholar 

  • Tang LF, Du LZ, Zou CC, Gu WZ (2005) Levels of matrix metalloproteinase-9 and its inhibitor in guinea pig asthma model following ovalbumin challenge. Fetal Pediatr Pathol 24:81–87

    CAS  PubMed  Google Scholar 

  • Tohda Y, Kubo H, Haraguchi R, Iwanaga T, Fukuoka Nakajima S (1998) Roles of histamine receptor in a guinea pig asthma model. Int J Immunopharmacol 20:565–571

    CAS  PubMed  Google Scholar 

  • Trifilieff A, El-Hashim A, Bertrand C (2000) Time course of inflammatory and remodeling events in a mouse model of asthma: effect of steroid treatment. Am J Physiol 279:L1120–L1128

    CAS  Google Scholar 

  • Trifilieff A, Bench A, Hanley M, Bayley D, Campbell E, Whittaker P (2003) PPAR-α and -γ, but not -δ agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-κB-independent effect. Br J Pharmacol 139:163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turner CR, Breslow R, Conklyn MJ, Andresen CJ, Patterson DK, Lopez-Anaya A, Owens B, Lee P, Watson JW, Showell HJ (1996) In vitro and in vivo effects of leukotriene B4 antagonism in a primate model of asthma. J Clin Invest 97:381–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlig T, Cooper D, Eber E, McMenamin C, Wildhaber JH, Sly PD (1998) Effects of long term oral treatment with leflunomide on allergic sensitization, lymphocyte activation, and airway inflammation in a rat model of asthma. Clin Exp Allergy 28:758–764

    CAS  PubMed  Google Scholar 

  • Valstar DL, Schijf MA, Nijkamp FP, Storm G, Arts JHE, Kuper CF, Bloksma N, Henricks PAJ (2006) Alveolar macrophages have a dual role in a rat model for trimellitic anhydride-induced occupational asthma. Toxicol Appl Pharmacol 211:20–29

    CAS  PubMed  Google Scholar 

  • Van Rijt LS, Prins JB, Leenen PJM, Thielemans K, de Vries VC, Hoogsteden HC, Lambrecht BN (2002) Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cnegbone marrow precursors in a mouse model of asthma. Blood 100:3663–3671

    PubMed  Google Scholar 

  • Vremec D, Shortman K (1997) Dendritic cell subtypes in mouse lymphoid organs. Cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen and lymph nodes. J Immunol 159:565–573

    CAS  PubMed  Google Scholar 

  • Xu L, Olivenstein R, Martin JG, Powell WS (2000) Inhaled budesonide inhibits OVA-induced airway narrowing, inflammation, and cys-LT synthesis in BN rats. J Appl Physiol 89:1852–1858

    CAS  PubMed  Google Scholar 

  • Zhang DH, Yang L, Cohn L, Parkyn L, Homer R, Ray P, Ray A (1999) Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11:473–482

    CAS  PubMed  Google Scholar 

  • Zhang M, Nomura A, Uchida Y, Iijima H, Sakamoto T, Iishii Y, Morishima Y, Mochizuki M, Masuyama K, Hirano K, Sekizawa K (2002) Ebselen suppresses late airway responses and airway inflammation in guinea pigs. Free Radic Biol Med 32:454–464

    CAS  PubMed  Google Scholar 

  • Zhou D, Chen G, Kim JT, Lee LY, Kang BC (1998) A dose–response relationship between exposure to cockroach allergens and induction of sensitization in an experimental asthma in Hartley guinea pigs. J Allergy Clin Immunol 101:653–659

    CAS  PubMed  Google Scholar 

  • Zou J, Young S, Zhu F, Xia L, Skeans S, Wan Y, Wang L, McClanahan D, Gheyas F, Wei D, Garlisi C, Jakway J, Umland S (2002) Identification of differentially expressed genes in a monkey model of allergic asthma by microarray technology. Chest 121:26S–27S

    PubMed  Google Scholar 

Prevention of Allergic Asthma Reaction

  • Astori M, von Garnier C, Kettner A, Dufour N, Corradin G, Spertini F (2000) Inducing tolerance by intranasal administration of long peptides in naïve and primed CBA/J mice. J Immunol 165:3497–3505

    CAS  PubMed  Google Scholar 

  • Batanero E, Barral P, Villalba M, Rodriguez R (2002) Sensitization of mice with olive pollen allergen Ole e 1 induces Th2 responses. Int Arch Allergy Immunol 127:269–275

    CAS  PubMed  Google Scholar 

  • Briner TJ, Kuo MC, Keating KM, Rogers BL, Greenstein JL (1993) Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the cat major allergen Fel d I. Proc Natl Acad Sci U S A 90:7608–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, Larson KA, Lee JJ, Irvin CG, Gelfand EW (1999) The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest 104:301–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke AH, Thomas WR, Rolland JM, Dow C, O’Brien RM (1999) Murine allergic respiratory responses to the major house dust mite allergen Der p 1. Int Arch Allergy Immunol 120:126–134

    CAS  PubMed  Google Scholar 

  • Fehrenbach H, Fehrenbach A, Pan T, Kasper M, Mason RJ (2002) Keratinocyte growth factor-induced proliferation of rat airway epithelium is restricted to Clara cell in vivo. Eur Respir J 20:1185–1197

    CAS  PubMed  Google Scholar 

  • Glaab T, Daser A, Brain A, Neuhaus-Steinmetz U, Fabel H, Alarie Y, Renz H (2001) Tidal midexpiratory flow as a measure of airway hyperresponsiveness in allergic mice. Am J Physiol 280:L565–L573

    Google Scholar 

  • Herz U, Braun A, Rückert H, Renz H (1998) Various immunological phenotypes are associated with increased airway hyperresponsiveness. Clin Exp Allergy 28:625–634

    CAS  PubMed  Google Scholar 

  • Herz U, Renz H, Wiedermann U (2004) Animal models of type I allergy using recombinant allergens. Methods 32:271–280

    CAS  PubMed  Google Scholar 

  • Hirahara K, Saito S, Serizawa N, Sasaki R, Sakaguchi M, Inouye S, Taniguchi Y, Kaminogawa S, Shiraishi A (1998) Oral administration of a dominant T-cell determinant peptide inhibits allergen-specific TH1 and TH2 cell responses in Cry j 2-primed mice. J Allergy Clin Immunol 102:961–967

    CAS  PubMed  Google Scholar 

  • Hoyne GF, Askonas BA, Hetzel C, Thomas WR, Lamb JR (1996) Regulation of house dust mite responses by intranasally administered peptide. Transient activation of CD4+ T cells precedes the development of tolerance in vivo. Int Immunol 8:335–342

    CAS  PubMed  Google Scholar 

  • Hoyne GF, Jarnicki AG, Thomas WR, Lamb JR (1997) Characterization of the specificity and duration of T cell tolerance to intranasally administered peptides in mice: a role for intramolecular epitope suppression. Int Immunol 9:1165–1173

    CAS  PubMed  Google Scholar 

  • Hoyne GF, Le Roux I, Corsin-Jimenez M, Tan K, Dunne J, Forsyth LMG, Dallman MJ, Owen MJ, Ish-Horowicz D, Lamb JR (2000) Serrate1-induced Notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int Immunol 12:177–185

    CAS  PubMed  Google Scholar 

  • Hufnagl K, Wagner B, Winkler B, Baier K, Hochreiter R, Thalhammer J, Kraft D, Scheiner O, Breiteneder H, Wiedermann U (2003) Induction of mucosal tolerance with recombinant Hev b 1 and recombinant Hev b 3 fpr prevention of latex allergy in BALB/c mice. Clin Exp Immunol 133:170–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hufnagl K, Winkler B, Focke M, Valenta R, Scheiner O, Renz H, Wiedermann U (2005) Intranasal tolerance induction with polypeptides derived from 3 noncross-reactive major aeroallergens prevents allergic polysensitization in mice. J Allergy Clin Immunol 116:370–376

    CAS  PubMed  Google Scholar 

  • Jarnicki AG, Thomas WR (2002) Stimulatory and inhibitory epitopes in the T cell responses of mice to Der p 1. Clin Exp Allergy 32:942–950

    CAS  PubMed  Google Scholar 

  • Marth T, Ring S, Schulte D, Klensch N, Strober W, Kelsall BL, Stallmach A, Zeitz M (2000) Antigen-induced mucosal T cell activation is followed by Th1 T cell suppression in continuously fed ovalbumin TCR-transgenic mice. Eur J Immunol 30:3478–3486

    CAS  PubMed  Google Scholar 

  • Meade BJ, Woolhiser M (2002) Murine models for natural rubber latex allergy assessment. Methods 27:63–68

    PubMed  Google Scholar 

  • Neuhaus-Steinmetz U, Glaab T, Daser A, Braun A, Lommatzsch M, Herz U, Kips J, Alarie Y, Renz H (2000) Sequential development of airway hyperresponsiveness and acute airway obstruction in a mouse model of allergic inflammation. Int Arch Allergy Immunol 121:57–67

    CAS  PubMed  Google Scholar 

  • Plopper CG, Van Winkle LS, Fanucchi MV, Malburg SR, Nishio SG, Chang A, Buckpitt AR (2001) Early events in naphthalene-induced acute Clara cell toxicity. II Comparison of glutathione depletion and histopathology by airway location. Am J Respir Cell Mol Biol 24:272–281

    CAS  PubMed  Google Scholar 

  • Postlethwait EM, Joad JP, Hyde DM, Schelegle ES, Bric JM, Weir AJ, Putney LF, Wong VJ, Velsor LW, Plopper CG (2000) Three-dimensional mapping of ozone-induced acute cytotoxicity in tracheobronchial airways of isolated perfused rat lung. Am J Respir Cell Mol Biol 22:191–199

    CAS  PubMed  Google Scholar 

  • Raap U, Brzoska T, Sohl S, Päth G, Emmel J, Herz U, Braun A, Luger T, Renz H (2003) α-Melanocyte-stimulating hormone inhibits allergic airway inflammation. J Immunol 170:353–359

    Google Scholar 

  • Reader JR, Tepper JS, Schelegle ES, Aldrich MC, Putney LF, Pfeiffer JW, Hyde DM (2003) Pathogenesis of mucous cell metaplasia in a murine asthma model. Am J Pathol 162:2069–2078

    PubMed Central  PubMed  Google Scholar 

  • Renz H, Smith HR, Henson JE, Ray BS, Irvin CG, Gelfand EW (1992) Aerosolized antigen exposure without adjuvant causes increased IgE production and increased airway responsiveness in the mouse. J Allergy Clin Immunol 89:1127–1138

    CAS  PubMed  Google Scholar 

  • Repa A, Wild C, Hufnagl K, Winkler B, Bohle B, Pollak A, Wiedermann U (2004) Influence of the route of sensitization on local and systemic immune response in a model of type I allergy. Clin Exp Immunol 137:12–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thakker JC, Xia JQ, Rickaby DA, Krenz GS, Kelly KJ (1999) A murine model of latex allergy-induced airway hyperresponsiveness. Lung 177:89–100

    CAS  PubMed  Google Scholar 

  • Treter S, Luqman M (2000) Antigen-specific T cell tolerance down-regulates mast cell responses in vivo. Cell Immunol 206:116–124

    CAS  PubMed  Google Scholar 

  • Uhal BD, Joshi I, Highes WF, Ramos C, Pardo A, Selman M (1998) Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 275(6 Pt 1):L1192–L1199

    CAS  PubMed  Google Scholar 

  • Von Garnier C, Astori M, Kettner A, Dufour N, Heusser C, Corradin G, Spertini F (2000) Allergen-derived long peptide immunotherapy down-regulates specific IgE responses and protects from anaphylaxis. Eur J Immunol 30:1638–1645

    Google Scholar 

  • Van Halteren AG, van der Cammen MJ, Cooper D, Savelkoul HF, Kraal G, Holt PG (1997) Regulation of antigen-specific IgE, IgG1, and mast cell responses to ingested allergen by mucosal tolerance induction. J Immunol 159:3009–3015

    PubMed  Google Scholar 

  • Wegmann M, Fehrenbach H, Fehrenbach A, Held T, Schramm C, Garn H, Renz H (2005) Involvement of distal airways in a chronic model of experimental asthma. Clin Exp Allergy 35:1263–1271

    CAS  PubMed  Google Scholar 

  • Wiedermann U, Jahn-Schmid B, Lindblad M, Rask C, Holmgren J, Kraft D, Ebner C (1999) Suppressive versus stimulatory effects of allergen/cholera toxoid (CTB) conjugates depending on the nature of the allergen in a murine model of type I allergy. Intern Immunol 11:1131–1138

    CAS  Google Scholar 

  • Wiedermann U, Herz U, Baier K, Vrtala S, Neuhaus-Steinmetz U, Bohle B, Dekan G, Renz H, Ebner C, Valenta R, Kraft D (2001) Intranasal treatment with a recombinant hypoallergenic derivative of the major birch pollen allergen Bet v 1 prevents allergic sensitization and airway inflammation in mice. Int Arch Allergy Immunol 126:68–77

    CAS  PubMed  Google Scholar 

  • Winkler B, Hufnagl K, Spittler A, Ploder M, Kállay E, Vrtala S, Valenta R, Kundi M, Renz H, Wiedermann U (2006) The role of Foxp3+ T cells in long-term efficacy of prophylactic and therapeutic mucosal tolerance induction in mouse. Allergy 61:173–180

    CAS  PubMed  Google Scholar 

  • Woolhiser MR, Munson AE, Meade BJ (2000) Immunological responses of mice following administration of natural rubber latex proteins by different routes of exposure. Toxicol Sci 55:343–351

    CAS  PubMed  Google Scholar 

  • Yasue M, Nakamura S, Yokota T, Okudaira H, Okumura Y (1998a) Experimental monkey model sensitization with mite antigen. Int Arch Allergy Immunol 115:303–311

    CAS  PubMed  Google Scholar 

  • Yasue M, Yokota T, Fukuda M, Takai T, Suko M, Okudaira H, Okumura Y (1998b) Hyposensitization to allergic reaction in rDer f 2-sensitized mice by the intranasal administration of a mutant of rDer f 2, C8/119S. Clin Exp Immunol 113:1–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasue M, Yokota T, Suko M, Okudaira H, Okomura Y (1998c) Comparison of sensitization to crude and purified house dust mite allergens in inbred mice. Lab Anim Sci 48:346–352

    CAS  PubMed  Google Scholar 

  • Yasue M, Yokota T, Okudaira H, Okumura Y (1999) Induction of allergic reactions in guinea pigs with purified house dust mite allergens. Cell Immunol 192:185–193

    CAS  PubMed  Google Scholar 

Bleomycin-Induced Pulmonary Fibrosis

  • Adachi K, Suzuki M, Sugimoto T, Yorozu K, Takai H, Uetsuka K, Nakyama H, Doi K (2003a) Effects of granulocyte colony-stimulating factor (G-CSF) on bleomycin-induced lung injury of various severity. Toxicol Pathol 31:665–673

    CAS  PubMed  Google Scholar 

  • Atzori L, Chua F, Dunsmore SE, Willis D, Barbarisi M, McAnulty RJ, Laurent GJ (2004) Attenuation of bleomycin induced pulmonary fibrosis in mice using the heme oxygenase inhibitor Zn-deuteroporphyrin IX-2,4-bisethylene glycol. Thorax 59:217–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avivi-Green C, Singai M, Vogel WF (2006) Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 174:420–427

    CAS  PubMed  Google Scholar 

  • Azoulay E, Herigault S, Levame M, Brochard L, Schlemmer B, Harf A, Celclaux C (2003) Effect of granulocyte colony-stimulating factor on bleomycin-induced acute lung injury and pulmonary fibrosis. Crit Care Med 31:1442–1448

    CAS  PubMed  Google Scholar 

  • Barrio J, Cortijo J, Milara J, Mata M, Guijarro R, Blasco P, Morcillo EJ (2006) In vitro tracheal hyperresponsiveness to muscarinic receptor stimulation by carbachol in a rat model of bleomycin-induced pulmonary fibrosis. Auton Autacoid Pharmacol 26:327–333

    CAS  PubMed  Google Scholar 

  • Chaudhary NI, Schnapp A, Park JE (2006) Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med 173:769–776

    CAS  PubMed  Google Scholar 

  • Chen F, Gong L, Zhang L, Wang H, Qi X, Wu X, Xiuao Y, Cai Y, Liu L, Li X, Ren J (2006) Short courses of low dose dexamethasone delay bleomycin-induced lung fibrosis in rats. Eur J Pharmacol 536:287–295

    CAS  PubMed  Google Scholar 

  • Chen J, Ziboh V, Giri SN (1997) Up-regulation of platelet-activating factors in lung and alveolar macrophages in the bleomycin-hamster model of pulmonary fibrosis. J Pharmacol Exp Ther 280:1219–1227

    CAS  PubMed  Google Scholar 

  • Giri SN, Chen Z, Younker WR, Schiedt MJ (1983) Effects of intratracheal administration of bleomycin on GSH shuttle enzymes, catalase, lipid peroxidation and collagen content in the lungs of hamsters. Toxicol Appl Pharmacol 71:132–141

    CAS  PubMed  Google Scholar 

  • Giri SN, Hyde DM, Nakashima JM (1986) Analysis of bronchoalveolar lavage from bleomycin-induced pulmonary fibrosis in hamsters. Toxicol Pathol 14:149–157

    CAS  PubMed  Google Scholar 

  • Goldstein RH, Fine A (1986) A fibrotic reactions in the lung: the activation of the lung fibroblast. Exp Lung Res 11:245–261

    CAS  PubMed  Google Scholar 

  • Gurujeyalakshmi G, Hollinger MA, Giri SN (1999) Pirfenidone inhibits PDGF isoforms in bleomycin hamster model of lung fibrosis at the translational level. Am J Physiol 276:L311–L318

    CAS  PubMed  Google Scholar 

  • Howell DCJ, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G, Laurent GJ, Chambers RC (2001) Direct thrombin inhibition reduced lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol 159:1383–1395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutton JJ Jr, Tappel AL, Undenfriend SA (1966) A rapid assay for collagen proline hydroxylase. Anal Biochem 16:384–394

    CAS  Google Scholar 

  • Inayama M, Nishioka Y, Azuma M, Muto S, Aono Y, Makino H, Tani K, Uehara H, Izumi K, Itai A, Sone S (2006) A novel Iκ B kinase-β inhibitor ameliorates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 173:1016–1022

    CAS  PubMed  Google Scholar 

  • Iyer SN, Gurujeyalakshmi G, Giri SN (1999) Effects of pirfenidone on procollagen gene expression at the transcription level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 289:211–218

    CAS  PubMed  Google Scholar 

  • Iyer SN, Hyde DM, Giri SN (2000) Anti-inflammatory effect of pirfenidone in the bleomycin-hamster model of lung inflammation. Inflammation 24:477–491

    CAS  PubMed  Google Scholar 

  • Karlinsky JB, Goldstein RH (1980) Fibrotic lung disease – a perspective. J Lab Clin Med 96(6):939–942

    CAS  PubMed  Google Scholar 

  • Keerthisingam CB, Jenkins RG, Harrison NK, Hernandez-Rodriguez NA, Booth H, Laurent GJ, Hart SL, Foster ML, McAnulty RJ (2001) Cyclogenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-b in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 158:1411–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matsuyama W, Watanabe M, Shirahama Y, Hirano R, Mitsuyama H, Higashimoto I, Osame M, Arimura K (2006) Suppression of discoidin domain receptor 1 by RNA interference attenuates lung inflammation. J Immunol 176:1928–1936

    CAS  PubMed  Google Scholar 

  • Morcillo EJ, Bulbena O (2003) In vivo antioxidant treatment protects against bleomycin-induced lung damage in rats. Br J Pharmacol 138:1037–1048

    PubMed Central  PubMed  Google Scholar 

  • Ohkawa H, Ohismi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  • Simler NR, Howell DC, Marshall RP, Goldsack NR, Hasleton PS, Laurent GJ, Chambers RC, Egan JJ (2002) The rapamycin analogue SDZ RAD attenuates bleomycin-induced pulmonary fibrosis in rats. Eur Respir J 19:1124–11247

    CAS  PubMed  Google Scholar 

  • Sogu S, Ozyurt H, Armutcu F, Kart L, Iraz M, Akyol O, Ozen S, Kaplan S, Temel I, Yildirim Z (2004) Endosteine prevents bleomycin-induced pulmonary fibrosis in rats. Eur J Pharmacol 494:213–220

    Google Scholar 

  • Tamagawa K, Taooka Y, Maeda A, Hiyama K, Ishioka A, Yamakido M (2000) Inhibitory effects of a lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 161:1279–1284

    CAS  PubMed  Google Scholar 

  • Taooka Y, Maeda A, Hiyama K, Ishioka S, Yamakido M (1997) Effects of neutrophil elastase inhibitor on bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 156:260–265

    CAS  PubMed  Google Scholar 

  • Terasaki Y (2001) Epimorphin in bleomycin-induced pulmonary fibrosis. Chest 120:S30–S32

    Google Scholar 

  • Terasaki Y, Fukuda Y, Ishizaki M, Yamanka N (2000) Increased expression of epimorphin in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 23:168–174

    CAS  PubMed  Google Scholar 

  • Wang HD, Yamaya M, Okinaga S, Jia XY, Kamanaka M, Takahashi H, Guo LY, Ohrui T, Sasaki H (2002) Bilirubin ameliorates bleomycin-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med 165:406–411

    PubMed  Google Scholar 

  • Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportion of this amino acid. Arch Biochem Biophys 93:440–444

    CAS  PubMed  Google Scholar 

Influence of Cytokines on Lung Fibrosis

  • Adachi K, Suzuki M, Sugimoto T, Suzuki S, Niki R, Oyama A, Uetsuka K, Nakamaya H, Doi K (2002) Granulocyte colony-stimulating factor exacerbates the acute lung injury and pulmonary fibrosis induced by intratracheal administration of bleomycin in rats. Exp Toxicol Pathol 53:501–510

    CAS  Google Scholar 

  • Adachi K, Suzuki M, Sugimoto T, Uetsuka K, Nakamaya H, Doi K (2003) Effects of granulocyte colony-stimulating factor on the kinetics of inflammatory cells in the peripheral blood and pulmonary lesions during the development of bleomycin-induced lung injury in rats. Exp Toxicol Pathol 55:21–32

    Google Scholar 

  • Agostini C, Gurrieri C (2006) Chemokine/cytokine cocktail in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3:357–363

    CAS  PubMed  Google Scholar 

  • Bett AJ, Haddara W, Prevec L, Graham FL (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 2. Proc Natl Acad Sci U S A 91:8802–8806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, Lavery C, Margetts PJ, Roberts AB, Gauldie J (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J Immunol 173:2099–2108

    CAS  PubMed  Google Scholar 

  • Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M (2005) TGF-β and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 175:5390–5395

    CAS  PubMed  Google Scholar 

  • Gauldie J, Galt T, Bonnioud P, Robbins C, Kelly M, Warburton T (2003) Transfer of the active form of the transforming growth factor-β1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol 163:2575–2584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham FL, Prevec L (1991) Gene transfer and expression protocols. In: Murray EJ, Walker JM (eds) Methods in molecular biology. Humana, Clifton, pp 109–127

    Google Scholar 

  • Hardie WD, Le Cras TD, Jiang K, Tichelaar JW, Azhar M, Korfhagen TR (2006) A conditioned expression of transforming growth factor-α in adult mouse causes pulmonary fibrosis. Am J Physiol 286:L741–L749

    Google Scholar 

  • Jiang D, Liang J, Hodge J, Lu B, Zhu Z, Yu S, Fan J, Gao Y, Yin Z, Homer R, Gerard C, Noble PW (2004) Regulation of pulmonary fibrosis by the chemokine receptor CXCR3. J Clin Invest 114:291–299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly M, Kolb M, Bonnlaud P, Gauldie J (2003) Re-evaluation of fibrinogenic cytokines in lung fibrosis. Curr Pharm Des 9:39–49

    CAS  PubMed  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180–13185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Liu X, Wen FQ, Kohyama T, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, Sigiura H, Kamio K, Rennard SI (2006) Smad3 mediates TGF-β1-induced collagen gel contraction by human lung fibroblasts. Biochem Biophys Res Commun 339:290–295

    CAS  PubMed  Google Scholar 

  • Kolb M, Margetts PJ, Sime PJ, Gauldie J (2001) Proteoglycans decorin and biglycan differentially modulate TGF-β-mediated fibrotic responses in the lung. Am J Physiol 280:L1327–L1334

    CAS  Google Scholar 

  • Kolb M, Bonnlaud P, Galt T, Sime PJ, Kelly MM, Margetts PJ, Gauldie J (2002) Differences in the fibrogenic response after transfer of active transforming growth factor-β1 gene to lungs of “fibrosis-prone” and “fibrosis-resistant” mouse strains. Am J Respir Cell Mol Biol 27:141–150

    CAS  PubMed  Google Scholar 

  • Lee CG, Kang HR, Homer RJ, Chupp G, Elias JA (2006) Transgenic modeling of transforming growth factor-β1. Role of apoptosis in fibrosis and alveolar remodeling. Proc Am Thorac Soc 3:418–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyatake S, Otsuka T, Yokota T, Lee F, Arai K (1985) Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J 4:2561–2568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International Union of Pharmacology. XXII. Nomenclature of chemokine receptors. Pharmacol Rev 52:145–176

    CAS  PubMed  Google Scholar 

  • Rosenfeld MA, Seigfried W, Yoshimura K, Yoneyama FKM, Stier LE, Paakko PK, Gilardi P, Straford-Perricaudet LD, Pericaudet M, Guggino WB, Pavirani A, Lecocq JP, Crystal RG (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155

    CAS  PubMed  Google Scholar 

  • Sheppard D (2006) Transforming growth factor β: a central modulator of pulmonary and airway inflammation and fibrosis. Proc Am Thorac Soc 3:413–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi-Wen X, Rodrïguez-Pascual F, Lamas S, Holmes A, Howat S, Pearson JD, Dashwood MR, du Bois RM, Denton CP, Black CM, Abraham DJ, Leask A (2006) Constitutive ALK5-independent c-Jun N-terminal kinase activation contributes to endothelin-1 overexpression in pulmonary fibrosis: evidence of an autocrine endothelin loop operating through the endothelin A and B receptors. Mol Cell Biol 26:5518–5527

    PubMed Central  PubMed  Google Scholar 

  • Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung. J Clin Invest 100:768–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sime PJ, Marr RA, Gauldie D, Xing Z, Hewlett BR, Graham FL, Gauldie J (1998) Transfer of tumor necrosis factor-α to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-β1 and myofibroblasts. Am J Pathol 153:825–832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith LR, Lundeen KA, Dively JP, Carlo DJ, Brostoff SW (1994) Nucleotide sequence of the Lewis rat granulocyte-macrophage colony-stimulating factor. Immunogenetics 39:80

    CAS  PubMed  Google Scholar 

  • Sullivan DE, Ferris MB, Pociask D, Brody AR (2005) Tumor necrosis factor-α induces transforming growth factor-β1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol 32:342–349

    CAS  PubMed  Google Scholar 

  • Uhal BD, Wang R, Laukka J, Zhuang J, Soledad-Conrad V, Filippatos G (2003) Inhibition of amiodarone-induced lung fibrosis but not alveolitis by angiotensin system antagonists. Pharmacol Toxicol 92:81–86

    CAS  PubMed  Google Scholar 

  • Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romnic AM, Adams JL, Hay DWP, Griswold DE (2000) SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol 279:L895–L902

    CAS  Google Scholar 

  • Warshamana GS, Corti M, Brody AR (2001) TNF-α, PDGF, and TGF-β1 expression by primary mouse bronchiolar-alveolar epithelial and mesenchymal cells: TNF-α induces TGF-β1. Exp Mol Pathol 71:13–33

    CAS  PubMed  Google Scholar 

  • Xing Z, Jordana M, Braciak T, Ohtoshi T, Gauldie J (1993) Lipopolysaccharide induces expression of granulocyte-macrophage colony stimulating factor, interleukin-8, and interleukin-6 in human nasal, but not lung, fibroblasts: evidence for heterogeneity within the respiratory tract. Am J Respir Cell Mol Biol 9:255–263

    CAS  PubMed  Google Scholar 

  • Xing Z, Braciak T, Jordana M, Croitoru K, Graham FL, Gauldie J (1994) Adenovirus-mediated cytokine gene transfer at tissue sites: overexpression of IL-6 induces lymphocytic hyperplasia in the lung. J Immunol 153:4059–4069

    CAS  PubMed  Google Scholar 

  • Xing Z, Ohkawara Y, Jordana M, Graham FL, Gauldie J (1996) Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia, monocytosis, and fibrotic reactions. J Clin Invest 97:1102–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu YD, Hua J, Mui A, O’Connor R, Grotendorst G, Khalil N (2003) Release of biologically active TGF-β1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol 285:L527–L539

    CAS  Google Scholar 

  • Yao HM, Xie QM, Chen JQ, Deng YM, Tang HF (2004) TGF-β1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 76:29–37

    CAS  PubMed  Google Scholar 

  • Zhao J, Shi W, Chen H, Warburton D (2000) Smad7 and Smad6 differentially modulate transforming growth factor-β-induced inhibition of embryonic lung morphogenesis. J Biol Chem 275:23992–23997

    CAS  PubMed  Google Scholar 

Emphysema Models

  • Blanco LN, Massaro GD, Massaro D (1989) Alveolar dimensions and number. Developmental and hormonal regulation. Am J Physiol 257(4 Pt 1):L240–L247

    CAS  PubMed  Google Scholar 

  • Boström H, Willetts K, Pekny M, Levéen P, Lindahl P, Hedstrand H, Pekna M, Hellström M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Törnell J, Heath JK, Betsholtz C (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    PubMed  Google Scholar 

  • Corteling R, Wyss D, Trifilieff A (2002) In vivo models of lung neutrophil activation. BMD Pharmacol 2:1

    Google Scholar 

  • Dirami C, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D (2004) Lung retinol cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol 286:L249–L256

    CAS  Google Scholar 

  • Fujita M, Ye Q, Ouchi H, Nakashima M, Hamada N, Hagimoto N, Kuwano K, Mason RJ, Nakanishi Y (2004) Retinoic acid fails to reverse emphysema in adult mouse models. Thorax 59:224–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gayraud B, Keene DR, Sakai LY, Ramirez F (2000) New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol 150:667–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hind M, Maden M (2004) Retinoic acid induces alveolar regeneration in the adult mouse lung. Eur Respir J 23:20–27

    CAS  PubMed  Google Scholar 

  • Hoyle GW, Li J, Finkelstein JB, Eisenberg T, Liu JY, Lasky JA, Athas G, Morris GF, Brody AR (1999) Emphysematous lesions, inflammation, and fibrosis in the lungs of transgenic mice overexpressing platelet-derived growth factor. Am J Pathol 154:1763–1775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue S, Nakamura H, Otake K, Saito H, Terashita K, Sato J, Takeda H, Tomoike H (2003) Impaired pulmonary inflammation response are a prominent feature of streptococcal pneumonia in mice with experimental emphysema. Am J Respir Crit Care Med 167:764–770

    Google Scholar 

  • Kirschvink N, Vincke G, Fiévez L, Onclinx C, Wirth D, Belleflamme M, Louis R, Cataldo D, Peck MJ, Gustin P (2005) Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and emphysema in rats. Toxicology 211:36–48

    CAS  PubMed  Google Scholar 

  • Kuraki T, Ishibashi M, Takayama M, Shiraishi M, Yoshida M (2002) A novel oral neutrophil elastase inhibitor (ONO-6818) inhibits human neutrophil elastase-induced emphysema in rats. Am J Respir Crit Care Med 166:496–500

    PubMed  Google Scholar 

  • LeCras TD, Spitzmiller RE, Albertine KH, Greenberg JM, Whitsett JA, Akeson AL (2004) VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am J Lung Cell Mol Physiol 287:L134–L142

    CAS  Google Scholar 

  • Lucattelli M, Cavarra E, de Santi MM, Tetley TD, Martorana PA, Lungarella G (2003) Collagen phagocytosis by lung alveolar macrophages in animal models of emphysema. Eur Respir J 22:728–734

    CAS  PubMed  Google Scholar 

  • Maden M, Hind M (2004) Retinoic acid in alveolar development, maintenance and regeneration. Philos Trans R Soc Lond B Biol Sci 359:799–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • March TH, Cossey PY, Esparca DC, Dix KJ, McDonald DJ, Bowen LE (2004) Inhalation administration of all-transretinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats. Exp Lung Res 30:383–404

    CAS  PubMed  Google Scholar 

  • Martorana PA, van Even P, Gardi C, Lungarella G (1989) A 16-month study of the development of genetic emphysema in tight-skin mouse. Am Rev Respir Dis 139:226–232

    CAS  PubMed  Google Scholar 

  • Massaro GD, Massaro D (2000) Retinoic acid treatment partially rescues failed septation in rats and mice. Am J Physiol 278:L955–L960

    CAS  Google Scholar 

  • Massaro D, Massaro GD (2003) Retinoids, alveolus formation, and alveolar deficiency. Am J Respir Cell Mol Biol 28:271–274

    CAS  PubMed  Google Scholar 

  • Massaro GD, Mortola JP, Massaro D (1995) Sexual dimorphism in the architecture of the lung’s exchange region. Proc Natl Acad Sci U S A 92:1105–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCartney AC, Fox B, Partridge TA, Macrae KD, Tetley TD, Phillips GJ, Guz A (1988) Emphysema in the Blotchy mouse: a morphometric study. J Pathol 156:77–81

    CAS  PubMed  Google Scholar 

  • Morino S, Nakamura T, Toba T, Takahashi M, Kushibiki T, Tabata Y, Shimizu Y (2005) Fibroblast growth factor-2 induces recovery of pulmonary blood flow in canine emphysema models. Chest 128:920–926

    CAS  PubMed  Google Scholar 

  • Murakami S, Nagaya N, Itoh T, Iwase T, Fujisato T, Nishioka K, Hamada K, Kangawa K, Kimura H (2005) Adrenomedullin regenerates alveoli and vasculature in elastase-induced pulmonary emphysema in mice. Am J Respir Crit Care Med 172:581–589

    PubMed  Google Scholar 

  • O’Donnell MD, O’Connor CM, FitzGerald MX, Lungarella G, Cavarra E, Martorana PA (1999) Ultrastructure of lung elastin and collagen in mouse models of spontaneous emphysema. Matrix Biol 18:357–360

    PubMed  Google Scholar 

  • Qi Y, Zhao G, Liu D, Shriver Z, Sundaram M, Sengupta S, Venkataraman G, Langer R, Sasisekharan R (2004) Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci U S A 101:9867–9872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ranga V, Kleinerman J (1981) Lung injury and repair in the blotchy mouse. Effects of nitrogen dioxide inhalation. Am Rev Respir Dis 123:90–97

    CAS  PubMed  Google Scholar 

  • Rossi GA, Hunninghake GW, Gadak JE, Szapiel SV, Kawanami O, Ferrans JV, Crystal RG (1984) Hereditary emphysema in the tight-skin mouse. Evaluation of pathogenesis. Am Rev Respir Dis 129:850–855

    CAS  PubMed  Google Scholar 

  • Selman M, Cisneros-Lira J, Gaxiola M, Ramïrez R, Kudlacz EM, Mitchell PG, Pardo A (2003) Matrix metalloproteinases inhibition attenuates tobacco smoke-induced emphysema in guinea pigs. Chest 123:1633–1641

    CAS  PubMed  Google Scholar 

  • Suga T, Kurabayashi M, Sando Y, Ohyama Y, Maeno T, Maeno Y, Aizawa H, Matsumura Y, Kuwaki T, Kuro-o M, Nabeshima Y, Nagai R (2000) Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am J Respir Cell Mol Biol 22:26–33

    CAS  PubMed  Google Scholar 

  • Tepper J, Pfeiffer J, Aldrich M, Tumas D, Kern J, Hoffman E, McLennan G, Hyde D (2000) Can retinoic acid ameliorate the physiologic and morphologic effects of elastase instillation in the rat? Chest 117:242–244

    Google Scholar 

  • Tsa PN, Su YN, Li H, Huang PH, Chien CT, Lai YL, Lee CN, Chen CA, Cheng WF, Wei SC, Yo CJ, Hsieh FJ, Hsu SM (2004) Overexpression of placenta growth factor contributes to the pathogenesis of pulmonary emphysema. Am J Respir Crit Care Med 169:505–511

    Google Scholar 

  • Whitney D, Massaro GD, Massaro D, Clerch LB (1999) Gene expression of cellular retinoid-binding proteins: modulation by retinoic acid and dexamethasone in postnatal rat lung. Pediatr Res 45:2–7

    CAS  PubMed  Google Scholar 

Models of Chronic Obstructive Pulmonary Disease (COPD)

  • Bartalesi B, Cavarra E, Fineschi S, Lucattelli M, Lunghi B, Martorana PA, Lungarella G (2005) Different lung responses to cigarette smoke in two strains of mice sensitive to antioxidants. Eur Respir J 25:15–22

    CAS  PubMed  Google Scholar 

  • Billah MM, Cooper N, Minnicozzi M, Warneck J, Wang P, Hey JA, Kreutner W, Rizzo CA, Smith SR, Young S, Chapman RW, Dyke H, Shih NY, Piwinski JJ, Cuss FM, Montana GAK, Egan RW (2002) Pharmacology of N-(3,5-dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 351591) a novel, orally active phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther 302:127–137

    CAS  PubMed  Google Scholar 

  • Canning BJ (2003) Modeling asthma and COPD in animals: a pointless exercise? Curr Opin Pharmacol 3:244–250

    CAS  PubMed  Google Scholar 

  • Cavarra E, Lucattelli M, Gambelli F, Bartalesi B, Fineschi S, Szarka A, Giannerini F, Martorana PA, Lungarella G (2001a) Human SLPI inactivation after cigarette smoke exposure in a new in vivo model of pulmonary oxidative stress. Am J Physiol 281:L412–L417

    CAS  Google Scholar 

  • Cavarra E, Bartalesi B, Lucattelli M, Fineschi S, Lunghi B, Gambelli F, Ortiz LA, Martorana PA, Lungarella G (2001b) Effects of cigarette smoke in mice with different levels of α 1-proteinase inhibitor and sensitivity to oxidants. Am J Respir Crit Care Med 164:886–890

    CAS  PubMed  Google Scholar 

  • Donnelly LE, Rogers DF (2003) Therapy of chronic obstructive pulmonary disease in the 21st century. Drugs 63:1973–1998

    CAS  PubMed  Google Scholar 

  • Dougall IG, Young A, Ince F, Jackson DM, Dougall IG, Young A, Ince F, Jackson DM (2003) Dual dopamine D2 receptor and β 2-adrenoreceptor agonists for the treatment of chronic obstructive pulmonary disease: the pre-clinical rationale. Respir Med 97(SupplA):S3–S7

    PubMed  Google Scholar 

  • Elias J (2004) The relationship between asthma and COPD. Lessons from transgenic mice. Chest 126:111S–116S

    CAS  PubMed  Google Scholar 

  • Escolar JD, Martinez MN, Rodriguez FJ, Gonzalo G, Escolar MA, Roche PA (1995) Emphysema as a result of involuntary exposure to tobacco smoke: morphometric study in the rat. Exp Lung Res 21:255–273

    CAS  PubMed  Google Scholar 

  • Frasca JM, Auerbach O, Carter HW, Parks VR (1983) Morphologic alterations induced by short term cigarette smoking. Am J Pathol 111:11–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–2004

    CAS  PubMed  Google Scholar 

  • Ind PW, Laitinen L, Laursen L, Wenzel S, Wouters E, Deamer L, Nystrom P (2003) Early clinical investigations of Viozan (sibenadel HCl), a novel D2 dopamine receptor, β 2-adrenoreceptor agonist for the treatment of chronic obstructive pulmonary disease symptoms. Respir Med 97(Suppl A):S9–S21

    PubMed  Google Scholar 

  • Inoue S, Nakamura H, Otake K, Saito H, Terashita K, Sato J, Takeda H, Tomoike H (2003) Impaired pulmonary inflammation responses are a prominent feature of streptococcal pneumonia in mice with experimental emphysema. Am J Respir Crit Care Med 167:764–770

    Google Scholar 

  • Jones H, Paul W, Page CP (2002) A new model for the continuous monitoring of polymorphonuclear leukocyte trapping in the pulmonary vasculature of the rabbit. J Pharmacol Toxicol Methods 48:21–29

    CAS  PubMed  Google Scholar 

  • Joos GF, Pauwels RA (2001) Tachykinin receptor antagonists: potential in airways diseases. Curr Opin Pharmacol 1:235–241

    CAS  PubMed  Google Scholar 

  • Kodavanti UP, Jackson MC, Ledbetter AD, Starcher BC, Evansky PA, Harewood A, Winsett DW, Costa DL (2000) The combination of elastase and sulfur dioxide exposure causes COPD-like lesions in the rat. Chest 117:299–302

    Google Scholar 

  • Kumar RK, Foster PS (2002) Modeling allergic asthma in mice. Pitfalls and opportunities. Am J Respir Coll Mol Biol 27:267–272

    CAS  Google Scholar 

  • Kumar RK, Herbert C, Thomas PS, Wollin L, Beume R, Yang M, Webb DC, Foster PS (2003) Inhibition of inflammation and remodeling by Roflumilast and dexamethasone in murine chronic asthma. J Pharmacol Exp Ther 307:349–355

    CAS  PubMed  Google Scholar 

  • Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005) Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32:311–318

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee DS, Kim EK, Choe KH, Oh YM, Shim TS, Kim SE, Lee YS, Lee SD (2005) Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med 172:987–993

    PubMed  Google Scholar 

  • Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G (2005) Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 172:848–853

    PubMed  Google Scholar 

  • Meshi B, Vitalis TZ, Ionescu D, Elliott WM, Liu C, Wang XD, Hayashi S, Hogg JC (2002) Emphysematous lung destruction by cigarette smoke. The effects of latent adenoviral infection on the lung inflammatory response. Am J Respir Cell Mol Biol 26:52–57

    CAS  PubMed  Google Scholar 

  • Romano SJ (2005) Selectin antagonists: therapeutic potential on asthma and COPD. Treat Respir Med 4:85–94

    CAS  PubMed  Google Scholar 

  • Sturton G, Fitzgerald M (2002) Phosphodiesterase 4 inhibitors for the treatment of COPD. Chest 121(5 Suppl):192S–196S

    CAS  PubMed  Google Scholar 

  • Wright JL (2001) The importance of ultramicroscopic emphysema in cigarette smoke-induced lung disease. Lung 179:71–81

    CAS  PubMed  Google Scholar 

  • Wright JL, Churg A (2002) Animal models of cigarette smoke-induced COPD. Chest 122(6 Suppl):301S–306S

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy D. Bruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bruse, K.D. (2015). Effects of Drugs on Air Ways. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics