Skip to main content
Log in

Electro-mechanical properties of human erythrocyte membranes: The pressure-dependence of potassium permeability

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Electrical breakdown of cell membranes is interpreted in terms of an electro-mechanical model. It postulates for certain finite membrane areas that the actual membrane thickness depends on the voltage across the membrane and the applied pressure. The magnitude of the membrane compression depends both on the dielectric constant and the compressive, elastic modulus transverse to the membrane plane. The theory predicts the existence of a critical absolute hydrostatic pressure at which the intrinsic membrane potential is sufficiently high to induce “mechanical” breakdown of the membrane. The theoretically expected value for the critical pressure depends on the assumption made both for the pressure-dependence of the elastic modulus of the membrane and of the intrinsic membrane potential. It is shown that the critical pressure is expected at about 65 MPa. The prediction of a critical pressure could be verified by subjecting human erythrocytes to high pressures (up to 100 MPa) in a hyperbaric chamber. The net potassium efflux in dependence on pressure was used as an criterion for breakdown. Whereas the potassium net efflux was linearly dependent on presure up to 60 MPa, a significant increase in potassium permeability was observed towards higher pressure in agreement with the theory. The increase as indicated by measurements in which the same erythrocyte sample was subjected to several consecutive pressure pulses. Temperature changes in the erythrocyte suspension during compression and decompression were so small (less than 2°C) that they could not account for the observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benz, R., Beckers, F., Zimmermann, U. 1979. Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study.J. Membrane Biol. 48:181

    Google Scholar 

  2. Coster, H.G.L., Steudle, E., Zimmermann, U. 1976. Turgor pressure sensing in plant cell membranes.Plant Physiol. 58:636

    Google Scholar 

  3. Coster, H.G.L., Zimmermann, U. 1975a. Direct demonstration of dielectric breakdown in the membranes ofValonia utricularis.Z. Naturforsch. 30c:77

    Google Scholar 

  4. Coster, H.G.L., Zimmermann, U. 1975b. Dielectric breakdown in the membranes ofValonia utricularis. The role of energy dissipation.Biochim. Biophys. Acta 382:410

    Google Scholar 

  5. Coster, H.G.L., Zimmermann, U. 1975c. The mechanism of electrical breakdown in the membranes ofValonia utricularis.J. Membrane Biol 22:73

    Google Scholar 

  6. Coster, H.G.L., Zimmermann, U. 1976. Transduction of turgor pressure by cell membrane compression.Z. Naturforsch. 31c:461

    Google Scholar 

  7. Cotterell, D., Whittam, R. 1971. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.J. Physiol (London) 214:509

    Google Scholar 

  8. Distèche, A. 1959. pH measurements with a glass electrode withstanding 1500kg/cm2 hydrostatic pressure.Rev. Sci. Instr. 30:474

    Google Scholar 

  9. Evans, E.A., Simon, S. 1975. Mechanics of electrocompression of lipid bilayer membranes.Biophy. J. 15:850

    Google Scholar 

  10. Haubrich, H. 1937. Über die Drudresistenz der Erythrocyten.Pfluegers Arch. 239:304

    Google Scholar 

  11. Heremans, K. 1979. High-pressure biochemistry: A survey.In: High-Pressure Science and Technology. Vol. I. Physical Properties and Material Synthesis. p. 699. Sixth AIRAPT Conference. K.D. Timmerhaus and M.S. Barber, editors. Plenum, New York-London

    Google Scholar 

  12. Kinosita, K., Tsong, T.Y. 1977. Hemolysis of human erythrocytes by a transient electric field.Proc. Nat. Acad. Sci USA 74:1923

    Google Scholar 

  13. Lassen, U.V. 1971. Membrane potentials of isolated cells.In: Proceedings of the First European Biophysics Congress: Vol. III. Membranes and Transport. E. Broda, A. Locher, and H. Springer-Lederer, editors. p. 13. Verlag der Wiener Medizinischen Academie, Vienna

    Google Scholar 

  14. Lassen, U.V., Sten-Knudsen, O. 1968. Direct measurements of membrane potential and membrane resistance of human red cells.J. Physiol. (London) 195:681

    Google Scholar 

  15. Miller, K.W., Paton, W.D.M., Smith, R.A., Smith, E.B. 1973. The pressure reversal of general anesthesia and membrane volume hypothesis.Mol. Pharmacol. 9:131

    Google Scholar 

  16. Murphy, R.B., Libby, W.F. 1976. Inhibition of erythrocyte phosphate transport by high pressures.Proc. Nat. Acad. Sci. USA 73:2767

    Google Scholar 

  17. Péquex, A. 1976a. Effects of pH changes on the frog skin electrical potential difference and on the potential variations induced by high hydrostatic pressure.Comp. Biochem. Physiol. 55A:103

    Google Scholar 

  18. Péquex, A. 1976b. Polarization variations induced by high hydrostatic pressures in the isolated frog skin as related to the effects on passive ionic permeability and active Na+ transport.J. Exp. Biol. 64:587

    Google Scholar 

  19. Péqueux, A. 1979. Ionic transport changes induced by high hydrostatic pressures in mammalian red blood cells.In:High-Pressure Science and Technology. Sixth AIRAPT Conference. Vol. I. Physical Properties and Material Synthesis. K.D. Timmerhaus and M.S. Barber, editors. p. 720. Plenum, New York-London

    Google Scholar 

  20. Péqueux, A., Gilles, R. 1977. Effects of high hydrostatic pressures on the activity of the membrane ATPases of some organs implicated in hydromineral regulation.Comp. Biochem. Physiol. 59B:207

    Google Scholar 

  21. Pilwat, G., Zimmermann, U., Riemann, F. 1975. Dielectric breakdown measurements of human and bovine erythrocyte membranes using benzyl alcohol as a probe molecule.Biochim. Biophys. Acta 406:424

    Google Scholar 

  22. Riemann, F., Zimmermann, U., Pilwat, G. 1975. Release and uptake of haemoglobin and ions in red blood cells incuced by dielectric breakdown.Biochim. Biophys. Acta 394:449

    Google Scholar 

  23. Singer, S.J., Nicolson, G.L. 1972. The fluid mosaic model of the structure of cell membranes,Science 175:720

    Google Scholar 

  24. Tsong, T.Y., Kingsley, E. 1975. Hemolysis of humen erythrocyte induced by a rapid temperature jump.J. Biol. Chem. 250:786

    Google Scholar 

  25. Wattiaux-de Coninck, W., Dubois, F., Wattiaux, R. 1977. Lateral phase separations and structural integrity of the inner membrane of rat-liverMitochondria organelles.Biochim. Biophys. Acta 471:421

    Google Scholar 

  26. Zimmermann, U. 1978. Physics of turgor-and osmoregulation.Annu. Rev. Plant Physiol. 29:121

    Google Scholar 

  27. Zimmermann, U., Beckers, F. 1978. Generation of action potential inChara corallina by turgor pressure changes.Planta 138:173

    Google Scholar 

  28. Zimmermann, U., Beckers, F., Coster, H.G.L. 1977. The effect of pressure on the electrical breakdown in the membranes ofValonia utricularis.BitBiochim. Biophys. Acta 464:399

    Google Scholar 

  29. Zimmermann, U., Beckers, F., Steudle, E.. 1977. Turgor sensing in plant cells by the electromechanical properties of the membrane.In: Transmembrane Ion Exchange in Plant. G. Ducet, R. Heller, and M. Thellier, editors. p. 155. C.N.R.S. Paris

    Google Scholar 

  30. Zimmermann, U., Hüsken, D. 1979. Elastic properties of the cell wall ofHalicystis parvula.In: Proceedings of the Plant Membrane Workshop. Toronto. R.M. Spanswick, W.J. Lucas and J. Dainty, editors. p. 471. Elsevier/North Holland Biomedical, Amsterdam

    Google Scholar 

  31. Zimmermann, U., Pilwat, G., Beckers, F., Riemann, F. 1976. Effects of external electrical fields on cell membranes.Bioelectrochem. Bioenerg. 3:58

    Google Scholar 

  32. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown of cell membranes.Biophys. J. 14:881

    Google Scholar 

  33. Zimmermann, U., Riemann, F., Pilwat, G. 1976. Enzyme loading of electrically homogenous human red blood cell ghosts prepared by dielectric breakdown.Biochim. Biophys. Acta 436:460

    Google Scholar 

  34. Zimmermann, U., Schulz, J., Pilwat, G. 1973. Transcellular ion flow inE. coli B and electrical sizing of bacteria.Biophys. J. 13:1005

    Google Scholar 

  35. Zimmermann, U., Steudle, E. 1974. The pressure dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis.J. Membrane Biol. 16:331

    Google Scholar 

  36. Zimmermann, U., Steudle, E., Lelkes, P.I. 1976. Turgor pressure regulation inValonia utricularis.Plant Physiol. 58:608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, U., Pilwat, G., Péqueux, A. et al. Electro-mechanical properties of human erythrocyte membranes: The pressure-dependence of potassium permeability. J. Membrain Biol. 54, 103–113 (1980). https://doi.org/10.1007/BF01940564

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01940564

Keywords

Navigation