Skip to main content

Pressure Effects on Artificial and Cellular Membranes

  • Chapter
High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

We review the combined effect of temperature and pressure on the structure, dynamics and phase behavior of lipid bilayers, differing in chain length, headgroup structure and composition as revealed by thermodynamic, spectroscopic and scattering experiments. The effect of additives, such as ions, cholesterol, and anaesthetics is discussed as well. Our data include also reports on the effect of pressure on the lateral organization of heterogeneous lipid membranes and lipid extracts from cellular membranes, as well as the influence of peptide and protein incorporation on the pressure-dependent structure and phase behavior of lipid membranes. Moreover, the effects of pressure on membrane protein function are summarized. Finally, we introduce pressure as a kinetic variable for studying the kinetics of various lipid phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Abbreviations: DMPC 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (di-C14:0); DMPS 1,2-dimyristoyl-sn-glycero-3-phosphatidylserin (di-C14:0); DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (di-C16:0); DPPE 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (di-C16:0); DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (di-C18:1,cis); DOPE 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (di-C18:1,cis); POPC 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphatidylcholine (C16:0,C18:1,cis); DLPC 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine; MO monoolein; ME monoelaidin; PA palmitoylic acid; MA myristoylic acid; Chol cholesterol.

References

  • Abe F (2013) Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys Chem 183:3–8

    Article  CAS  PubMed  Google Scholar 

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Article  CAS  PubMed  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold MR, Kalbitzer RH, Kremer W (2003) High-sensitivity sapphire cells for high pressure NMR spectroscopy on proteins. J Magn Reson 161:127–131

    Article  CAS  Google Scholar 

  • Balny C, Hayashi R, Heremans K, Masson P (eds) (1992) High pressure and biotechnology, vol 224. Colloque Inserm, John Libbey Eurotext Ltd, Montrouge, pp 195–208

    Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DH, Ferguson G, Valle G (2008) Adaptations of the psychrotolerant piezophile Photobacterium profundum strain SS9. In: Michiels C, Bartlett D, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington DC, pp 319–337

    Chapter  Google Scholar 

  • Bernsdorff C, Wolf A, Winter R (1996) The effect of temperature and pressure on structural and dynamic properties of phospholipid/sterol mixtures – a steady-state and time-resolved fluorescence anisotropy study. Z Phys Chem 193:151–173

    Article  CAS  Google Scholar 

  • Bernsdorff C, Wolf A, Winter R, Gratton E (1997) Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys J 72:1264–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Böttner M, Winter R (1993) Influence of the local anesthetic tetracaine on the phase behavior and the thermodynamic properties of phospholipid bilayers. Biophys J 65:2041–2046

    Article  PubMed Central  PubMed  Google Scholar 

  • Böttner M, Ceh D, Jacobs U, Winter R (1994) High pressure volumetric measurements on phospholipid bilayers. Z Phys Chem 184:205–218

    Article  Google Scholar 

  • Chandrashekhar VK, Ces O, Templer RH, Seddon JM (2013) Pressure effects on a protein-lipid model membrane. Soft Matter 9:6525–6531

    Article  CAS  Google Scholar 

  • Chong PL, Fortes PA, Jameson DM (1985) Mechanisms of inhibition of (Na, K)-ATPase by hydrostatic pressure studied with fluorescent probes. J Biol Chem 260:14484–14490

    CAS  PubMed  Google Scholar 

  • Conn CE, Ces O, Mulet X, Finet S, Winter R, Seddon JM, Templer RH (2006) Dynamics of structural transformations between lamellar and inverse bicontinuous cubic lyotropic phases. Phys Rev Lett 96:108102

    Article  PubMed  CAS  Google Scholar 

  • Conn CE, Ces O, Squires AM, Mulet X, Winter R, Finet SM, Templer RH, Seddon JM (2008) A pressure-jump time-resolved X-ray diffraction study of cubic-cubic transition kinetics in monoolein. Langmuir 24:2331–2340

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Inoue I, Kukita F, Stühmer W (1984) Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J 11:137–147

    Article  CAS  PubMed  Google Scholar 

  • Czeslik C, Reis O, Winter R, Rapp G (1998) Effect of high pressure on the structure of dipalmitoylphosphatidylcholine bilayer membranes: a synchrotron-X-ray diffraction and FT-IR spectroscopy study using the diamond anvil technique. Chem Phys Lipids 91:135–144

    Article  CAS  Google Scholar 

  • Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high pressure conditions. Chem Soc Rev 35:858–875

    Article  CAS  PubMed  Google Scholar 

  • Danielowski K (1997) Einfluss von Lachgas, Argon und Stickstoff auf das Phasenverhalten von Phospholipiden. Diploma thesis, Dortmund University of Technology

    Google Scholar 

  • De Smedt H, Borghgraef R, Ceuterick F, Heremans K (1979) Pressure effects on lipid-protein interactions in (Na+, K+)-ATPase. Biochim Biophys Acta 556:479–489

    Article  PubMed  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Yayanos AA (1987) Properties of the glucose transport system in some deep-sea bacteria. Appl Environ Microbiol 53:527–532

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenblatter J, Winter R (2005) Pressure effects on the structure and phase behavior of phospholipid polypeptide bilayers: a synchrotron small-angle X-ray scattering and 2H-NMR spectroscopy study on DPPC gramicidin lipid bilayers. Z Phys Chem 219:1321–1345

    Article  Google Scholar 

  • Eisenblätter J, Zenerino A, Winter R (2000) High pressure 1H-NMR on model biomembranes: a study of the local anaesthetic tetracaine incorporated into POPC lipid bilayers. Magn Reson Chem 38:662–667

    Article  Google Scholar 

  • Erbes J, Winter R, Rapp G (1996) Rate of phase transformations between mesophases of the 1:2 lecithin/fatty acid mixtures DMPC/MA and DPPC/PA - a time-resolved synchrotron X-ray diffraction study. Ber Bunsenges Phys Chem 100:1713–1722

    Article  CAS  Google Scholar 

  • Erbes J, Gabke A, Rapp G, Winter R (2000) Kinetics of phase transformations between lyotropic lipid mesophases of different topology: a time-resolved synchrotron X-ray diffraction study using the pressure-jump relaxation technique. Phys Chem Chem Phys 2:151–162

    Article  CAS  Google Scholar 

  • Friedrich O, Kress KR, Hartmann M, Frey B, Sommer K, Ludwig H, Fink RHA (2006) Prolonged high-pressure treatments in mammalian skeletal muscle result in loss of functional sodium channels and altered calcium channel kinetics. Cell Biochem Biophys 45:71–83

    Article  CAS  PubMed  Google Scholar 

  • Hallinen KM, Tristam-Nagle S, Nagle JF (2012) Volumetric stability of lipid bilayers. Phys Chem Chem Phys 14:15452–15457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammouda B, Worcester D (1997) Interdigitated hydrocarbon chains in C20 and C22 phosphatidylcholines induced by hydrostatic pressure. Physica B Condens Matt 241–243:1175–1177

    Google Scholar 

  • Hanford MJ, Peeples TL (2002) Archeal tetraether lipids: unique structures and applications. Appl Biochem Biotechnol 97:45–62

    Article  CAS  PubMed  Google Scholar 

  • Heimburg T (2007) Thermal biophysics of membranes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Heinemann SH, Conti F, Stühmer W, Neher E (1987) Effects of hydrostatic pressure on membrane processes. Sodium channels, calcium channels, and exocytosis. J Gen Physiol 90:765–778

    Article  CAS  PubMed  Google Scholar 

  • Janosch S, Nicolini C, Ludolph B, Peters C, Volkert M, Hazlet TL, Gratton E, Waldmann H, Winter R (2004) Partitioning of dual-lipidated peptides into membrane microdomains: lipid sorting vs peptide aggregation. J Am Chem Soc 126:7496–7503

    Article  CAS  PubMed  Google Scholar 

  • Jeworrek C, Pühse M, Winter R (2008) X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique. Langmuir 24:11851–11859

    Article  CAS  PubMed  Google Scholar 

  • Johnson FH, Flagler EA (1950) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112:91–92

    Article  CAS  PubMed  Google Scholar 

  • Jonas J (ed) (1991) High pressure NMR. Springer-Verlag, Berlin

    Google Scholar 

  • Kapoor S, Triola G, Vetter IR, Erlkamp M, Waldmann H, Winter R (2012a) Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proc Natl Acad Sci USA 109:460–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapoor S, Weise K, Erlkamp M, Triola G, Waldmann H, Winter R (2012b) The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction. Eur Biophys J 41:801–813

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S, Berghaus M, Suladze S, Prumbaum D, Grobelny S, Degen P, Raunser S, Winter R (2014) Prebiotic cell membranes that survive extreme environmental pressure conditions. Angew Chem Intern Ed 53:8397–8401

    Article  CAS  Google Scholar 

  • Kato M, Hayashi R, Tsuda T, Taniguchi K (2002) High pressure-induced changes of biological membrane. Study on the membrane-bound Na+/K+-ATPase as a model system. Eur J Biochem 269:110–118

    Article  CAS  PubMed  Google Scholar 

  • Klink BU, Winter R, Engelhard M, Chizhov I (2002) Pressure dependence of the photocycle kinetics of bacteriorhodopsin. Biophys J 83:3490–3498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Köhling R, Woenckhaus J, Klyachko NL, Winter R (2002) Small-angle neutron scattering study of the effect of pressure on AOT-n-octane-water mesophases and the effect of α-chymotrypsin incorporation. Langmuir 18:8626–8632

    Article  CAS  Google Scholar 

  • Kraineva J, Narayanan RA, Kondrashkina E, Thiyagarajan P, Winter R (2005) Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and cytochrome c containing monoolein dispersions monitored by time-resolved small-angle X-ray diffraction. Langmuir 21:3559–3571

    Article  CAS  PubMed  Google Scholar 

  • Krivanek R, Okoro L, Winter R (2008) Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophys J 94:3538–3548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landwehr A, Winter R (1994a) High-pressure differential thermal analysis of lamellar to lamellar and lamellar to non-lamellar lipid phase transitions. Ber Bunsenges Phys Chem 98:214–218

    Article  CAS  Google Scholar 

  • Landwehr A, Winter R (1994b) The T, x, p-phase diagram of binary phospholipid mixtures. Ber Bunsenges Phys Chem 98:1585–1589

    Article  CAS  Google Scholar 

  • Linke K, Periasamy N, Ehrmann M, Winter R, Vogel RF (2008) Influence of high pressure on the dimerization of ToxR, a protein involved in bacterial signal transduction. App Environ Microbiol 74:7821–7823

    Article  CAS  Google Scholar 

  • Linke K, Periasamy N, Eloe EA, Ehrmann M, Winter R, Barlett DH, Vogel RF (2009) Influence of membrane organization on the dimerization ability of ToxR from photobacterium profundum under high hydrostatic pressure. High Press Res 29:341–442

    Article  CAS  Google Scholar 

  • Macdonald AG (1992) Effects of high hydrostatic pressure on natural and artificial membranes. In: Balny C, Hayashi R, Heremans K, Mason P (eds) High pressure and biotechnology, vol 224, Colloque INSERM. John Libbey Eurotext Ltd., Montrouge, pp 67–75

    Google Scholar 

  • Macdonald AG (1997) Effect of high hydrostatic pressure on the BK channel in bovine chromaffin cells. Biophys J 73:1866–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macdonald AG (2001) High hydrostatic pressure activates BK channels. Biophys J 80:A888

    Google Scholar 

  • Macdonald AG (2002a) Experiments on ion channels at high pressure. Biochim Biophys Acta 1595:387–389

    Article  CAS  PubMed  Google Scholar 

  • Macdonald AG (2002b) Ion channels under high pressure. Comp Biochem Physiol A Mol Integr Physiol 131:587–593

    Article  CAS  PubMed  Google Scholar 

  • Macdonald AG, Martinac B (2005) Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur Biophys J 34:434–441

    Article  CAS  PubMed  Google Scholar 

  • MacNaughtan W, MacDonald AG (1980) Effects of gaseous anaesthetics and inert gases on the phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine. Biochim Biophys Acta 597:193–198

    Article  CAS  PubMed  Google Scholar 

  • Mantulin WW, Gotto AM, Pownall HJ (1984) Effect of hydrostatic pressure on the transfer of a fluorescent phosphatidylcholine between apolipoprotein-phospholipid recombinants. J Am Chem Soc 106:3317–3319

    Article  CAS  Google Scholar 

  • Matsuki H, Goto M, Kusube M, Tamai N, Kaneshina S (2005) Barotropic phase transitions of 1-palmitoyl-2-stearoylphosphatidylcholine bilayer membrane. Chem Lett 34:270–271

    Article  CAS  Google Scholar 

  • Matsuki H, Miyazaki E, Sakano F, Tamai N, Kaneshina S (2007) Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths. Biochim Biophys Acta 1768:479–489

    Article  CAS  PubMed  Google Scholar 

  • Matsuki H, Goto M, Tada K, Tamai N (2013) Thermotropic and barotropic phase behavior of phosphatidylcholine bilayers. Int J Mol Sci 14:2282–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meersman F, Daniel I, Bartlett D, Winter R, Hazael R, McMillan PF (2013) High-pressure biochemistry and biophysics. Rev Mineral Geochem 75:607–648

    Article  CAS  Google Scholar 

  • Meyer HH (1899) Theorie der Alkoholnarkose. Arch Exp Path Pharmak 42:109–118

    Article  Google Scholar 

  • Meyer R, Heinemann SH (1997) Temperature and pressure dependence of Shaker K+ channel N- and C-type inactivation. Eur Biophys J 26:433–445

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle DB, Biltonen RL, Halsey MJ (1978) Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Proc Natl Acad Sci USA 75:4906–4910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicolini C, Baranski J, Schlummer S, Palomo J, Lumbierres-Burgues M, Kahms M, Kuhlmann J, Sanchez S, Gratton E, Waldmann H, Winter R (2005) Visualizing association of N-Ras in lipid microdomains: influence of domain structure and interfacial adsorption. J Am Chem Soc 128:192–201

    Article  CAS  Google Scholar 

  • Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R (2006) Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures‚ a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. Biochim Biophys Acta 1758:248–258

    Article  CAS  PubMed  Google Scholar 

  • Oger PM, Cario A (2013) Adaptation of the membrane in archaea. Biophys Chem 183:3–8

    Article  CAS  Google Scholar 

  • Oger P, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809

    Article  PubMed  Google Scholar 

  • Overton E (1909) Studien über die Narkose. Gustav Fischer, Jena

    Google Scholar 

  • Periasamy N, Teichert H, Weise K, Vogel RF, Winter R (2009) Effects of temperature and pressure on the lateral organization of model membranes with functionally reconstituted multidrug transporter LmrA. Biochim Biophys Acta 1788:390–401

    Article  CAS  PubMed  Google Scholar 

  • Petrov E, Rohde PR, Macdonald AG, Martinac B (2007) Effect of high hydrostatic pressure and voltage on gating of the bacterial mechanosensitive channel of small conductance. Proc 4th Int Conf High Pressure Biosci Biotechol 1:20–27

    Google Scholar 

  • Petrov E, Rohde PR, Martinac B (2011) Flying-patch patch-clamp study of G22E-MscL mutant under high hydrostatic pressure. Biophys J 100:1635–1641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Picard A, Daniel I (2013) Pressure as an environmental parameter for microbial life. Biophys Chem 183:30–41

    Article  CAS  PubMed  Google Scholar 

  • Potekhin SA, Senin AA, Abdurakhmanov NN, Khusainova RS (2008) Thermodynamic invariants of gel to the liquid-crystal 1,2-diacylphosphatidylcholines transition. Biochim Biophys Acta 1778:2588–2593

    Article  CAS  PubMed  Google Scholar 

  • Powalska E, Janosch S, Kinne-Saffran E, Kinne RKH, Fontes CFL, Mignaco JA, Winter R (2007) Fluorescence spectroscopic studies of pressure effects on Na+, K + -ATPase reconstituted into phospholipid bilayers and model raft mixtures. Biochemistry 46:1672–1683

    Article  CAS  PubMed  Google Scholar 

  • Scarlata S (2005) Determination of the activation volume of PLCβ by Gβγ-subunits through the use of high hydrostatic pressure. Biophys J 88:2867–2874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schiewek M, Blume A (2008) Pressure jump relaxation investigations of lipid membranes using FTIR spectroscopy. Eur Biophys J 38:219–228

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM, Templer RH (1993) Cubic phases of self-assembled amphiphilic aggregates. Phil Trans R Soc A 344:377–401

    Article  CAS  Google Scholar 

  • Seemann H, Winter R (2003) Volumetric properties, compressibilities and volume fluctuations in phospholipid-cholesterol bilayers. Z Phys Chem 217:831–846

    Article  CAS  Google Scholar 

  • Seemann H, Winter R, Royer CA (2001) Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of staphylococcal nuclease. J Mol Biol 307:1091–1102

    Article  CAS  PubMed  Google Scholar 

  • Souza MO, Creczynski-Pasa TB, Scofano HM, Graber P, Mignaco JA (2004) High hydrostatic pressure perturbs the interactions between CF0F1 subunits and induces a dual effect on activity. Int J Biochem Cell Biol 36:920–930

    Article  CAS  PubMed  Google Scholar 

  • Squires A, Templer RH, Ces O, Gabke A, Woenckhaus J, Seddon JM, Winter R (2000) Kinetics of lyotropic phase transitions involving the inverse bicontinuous cubic phases. Langmuir 16:3578–3582

    Article  CAS  Google Scholar 

  • Squires AM, Templer RH, Seddon JM, Woenckhaus J, Winter R, Finet S, Theyencheri N (2002) Kinetics and mechanism of the lamellar to gyroid inverse bicontinuous cubic phase transition. Langmuir 18:7384–7392

    Article  CAS  Google Scholar 

  • Tamura K, Matsumoto T, Suzuki Y (2003) Effects of gas pressure on the phase transition temperature of liposomal bilayer membranes. In: Winter R (ed) Advances in high pressure bioscience and biotechnology II. Springer-Verlag, Heidelberg, pp 203–206

    Chapter  Google Scholar 

  • Teichert H (2008) Behaviour of membrane transport proteins under high hydrostatic pressure. M.Sc. Thesis, Technische Universität München

    Google Scholar 

  • Templer RH, Seddon JM, Duesing PM, Winter R, Erbes J (1998) Modeling the phase behavior of the inverse hexagonal and inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures. J Phys Chem B 102:7262–7271

    Article  CAS  Google Scholar 

  • Ulmer HM, Herberhold H, Fahsel S, Gänzle MG, Winter R, Vogel RF (2002) Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in lactobacillus plantarum. Appl Environ Microbiol 68:1088–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wann KT, Macdonald AG (1980) The effects of pressure on excitable cells. Comp Biochem Phys A Phys 66:1–12

    Article  Google Scholar 

  • Weise K, Triola G, Brunsveld L, Waldmann H, Winter R (2009) Influence of the lipidation motif on the partitioning and association of N-Ras in model membrane subdomains. J Am Chem Soc 131:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Winter R (2001) Effects of hydrostatic pressure on lipid and surfactant phases. Curr Opin Colloid Interface Sci 6:303–312

    Article  CAS  Google Scholar 

  • Winter R (2002) Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta 1595:160–184

    Article  CAS  PubMed  Google Scholar 

  • Winter R (2003a) High pressure NMR studies on lyotropic lipid mesophases and model biomembranes. Ann Rep NMR Spectr 50:163–200

    Article  CAS  Google Scholar 

  • Winter R (ed) (2003b) High pressure bioscience and biotechnology II. Springer-Verlag, Heidelberg

    Google Scholar 

  • Winter R (2013) Special issue: biomolecular systems under extreme environmental conditions. Biophys Chem 183:1–2

    Article  CAS  PubMed  Google Scholar 

  • Winter R, Czeslik C (2000) Pressure effects on the structure of lyotropic lipid mesophases and model biomembrane systems. Z Kristallogr 215:454–474

    CAS  Google Scholar 

  • Winter R, Dzwolak W (2004) Temperature-pressure configurational landscape of lipid bialyers and proteins. Cell Mol Biol 50:397–417

    CAS  PubMed  Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    Article  CAS  Google Scholar 

  • Winter R, Jonas J (1999) High pressure molecular science. Kluwer Academic Publisher, Dordrecht, 358 of NATO Science Series E

    Book  Google Scholar 

  • Winter R, Köhling R (2004) Static and time-resolved synchrotron small-angle X-ray scattering studies of lyotropic lipid mesophases, model biomembranes and proteins in solution. J Phys Condens Matt 16:S327–S352

    Article  CAS  Google Scholar 

  • Winter R, Pilgrim WC (1989) A SANS study of high pressure phase transitions in model biomembranes. Ber Bunsenges Phys Chem 93:708–717

    Article  CAS  Google Scholar 

  • Winter R, Christmann MH, Böttner M, Thiyagarajan P, Heenan R (1991) The influence of the local anaesthetic tetracaine on the temperature and pressure dependent phase behaviour of model biomembranes. Ber Bunsenges Phys Chem 95:811–820

    Article  CAS  Google Scholar 

  • Winter R, Erbes J, Templer RH, Seddon JM, Syrykh A, Warrender NA, Rapp G (1999a) Inverse bicontinuous cubic phases in fatty acid/phosphatidylcholine mixtures: the effects of pressure and lipid composition. Phys Chem Chem Phys 1:887–893

    Article  CAS  Google Scholar 

  • Winter R, Gabke A, Czeslik C, Pfeifer P (1999b) Power-law fluctuations in phase-separated lipid membranes. Phys Rev E 60:7354–7359

    Article  CAS  Google Scholar 

  • Wlodarczyk A, McMillan PF, Greenfield SA (2006) High pressure effects in anaesthesia and narcosis. Chem Soc Rev 35:890–898

    Article  CAS  PubMed  Google Scholar 

  • Woenckhaus J, Köhling R, Winter R, Thiyagarajan P, Finet S (2000) High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique. Rev Sci Instrum 71:3895–3899

    Article  CAS  Google Scholar 

  • Wong PT, Siminovitch DJ, Mantsch HH (1988) Structure and properties of model membranes: new knowledge from high-pressure vibrational spectroscopy. Biochim Biophys Acta 47:139–171

    Article  Google Scholar 

  • Yayanos AA (1998) Empirical and theoretical aspects of life at high pressure in the deep sea. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 47–92

    Google Scholar 

  • Zein M, Winter R (2000) Effect of temperature, pressure and lipid acyl chain length on the structure and phase behavior of phospholipid-gramicidin bilayers. Phys Chem Chem Phys 2:4545–4551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (DFG, FOR 1979) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Winter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winter, R. (2015). Pressure Effects on Artificial and Cellular Membranes. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_17

Download citation

Publish with us

Policies and ethics