Skip to main content
Log in

Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Microbial activity in mixed wastes can have an appreciable effect on the dissolution or precipitation of toxic metals and radionuclides. Fundamental information on microbial dissolution and stabilization (immobilization) of toxic metals and radionuclides, in particular actinides and fission products, in nuclear wastes under various microbial process conditions, e.g., aerobic, denitrifying, iron-reducing, fermentative, sulfate-reducing, and methanogenic conditions is very limited. Microbial transformations of typical waste components such as metal oxides, metal coprecipitates, naturally occurring minerals, and metal organic complexes are reviewed. Such information can be useful in the development of 1) predictive models on the fate and long-term transport of toxic metals and radionuclides from waste disposal sites, and 2) biotechnological applications of waste treatment leading to volume reduction and stabilization as wall as recovery and recycling of radionuclides and toxic metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aickin, R.M., and Dean, C.R., Lead accumulation by microorganisms. Microb. Lett.5 (1978) 129–133.

    Google Scholar 

  2. Avnimelech, Y., and Raveh, A., Decomposition of chelates leached from waste-disposal sites. J. envir. Qual.11 (1982) 69–72.

    CAS  Google Scholar 

  3. Barnhart, B.J., Campbell, E.W., Martinez, E., Caldwell, D.E., and Hallett, R., Potential microbial impact on transuranic wastes under conditions expected in the waste isolation pilot plant (WIPP). Los Alamos National Laboratory, LA-8297-PR. 1980.

  4. Bautista, E.M., and Alexander, M., Reduction of inorganic compounds by soil microorganisms. Soil Sci. Soc. Am. Proc.36 (1972) 918–920.

    CAS  Google Scholar 

  5. Beckert, W.F., and Au, F.H.F., Plutonium uptake by a soil fungus and transport to its spores, in: Transuranium Nuclides in the Environment, pp. 337–345. IAEA-SM-199/72, 1976.

  6. Berthelin, J., and Munier-Lamy, C., Microbial mobilization and preconcentration of uranium from various rock materials by fungi, in: Environmental Biogeochemistry. Ed. R. Hallberg. Ecol. Bull. (Stockholm)35 (1983) 395–401.

  7. Beveridge, T.J., The immobilization of soluble metals by bacterial walls. Biotechnology and Bioengineering Symp. No. 16, 127–139. John Wiley and Sons, Inc., New York, 1986.

    Google Scholar 

  8. Beveridge, T.J., Ultrastructure, chemistry and functions of the bacterial wall. Int. Rev. Cytol.72 (1981) 229–317.

    CAS  PubMed  Google Scholar 

  9. Beveridge, T.J., and Fyfe, W.S., Metal fixations by bacterial cell walls. Can. J. Earth Sci.22 (1985) 1892–1898.

    Google Scholar 

  10. Bhurat, M.C., Dwivedy K.K., Jayaram, K.M.V., and Dar, K.K., Some results of microbial leaching of uranium ore samples from Narwepahar, Bhatin and Keruadungri, Singhbhum District, Bihar. NML Technical J.15 (1973) 47–51.

    CAS  Google Scholar 

  11. Bloomfield, C., and Kelso, W.I., The mobilization and fixation of molybdenum, vanadium, and uranium by decomposing plant matter. J. Soil Sci.24 (1973) 368–379.

    CAS  Google Scholar 

  12. Bloomfield, C., and Pruden, G., The effects of aerobic and anaerobic incubation on the extractabilities of heavy metals in digested sewage sludge. Envir. Pollut.8 (1975) 217–232.

    CAS  Google Scholar 

  13. Bloomfield, C., Kelso, W.I., and Piotrowska, M., The mobilization of trace elements by aerobically decomposing plant material under simulated soil conditions. Chemistry Industry9 (1971) 59–61.

    Google Scholar 

  14. Bolter, E., Butz, T., and Arseneau, J.F., Mobilization of heavy metals by organic acids in the soils of a lead mining and smelting district, in: Trace Substances in Environmental Health, vol. IX, pp. 107–112. Ed. D.D. Hemphill. Univ. of Missouri, Columbia, Missouri 1975.

    Google Scholar 

  15. Bolze, C.E., Malone, P.G., and Smith, M.J., Microbial mobilization of barite. Chem. Geol.13 (1974) 141–143.

    CAS  Google Scholar 

  16. Bopp, L.H., and Ehrlich, H.L., Chromate resistance and reduction inPseudomonas aeruginosa strain LB300. Arch. Microbiol.150 (1988) 426–431.

    CAS  Google Scholar 

  17. Brierley, C.L., Biogenic extraction of uranium from ores of the Grants region, in: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, pp. 345–363. Eds L.E. Murr, A.E. Torma and J.A. Brierley. Academic Press, New York 1978.

    Google Scholar 

  18. Brierley, C.L., Microbiological mining. Sci. Am.242 (1982) 44–53.

    Google Scholar 

  19. Brown, M.J., and Lester, J.N., Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Res.13 (1979) 817–837.

    CAS  Google Scholar 

  20. Bruland, K.W., Bertine, K., Koide, M., and Goldberg, E.D., History of metal pollution in Southern California coastal zone. Envir. Sci. Technol.8 (1974) 425–432.

    CAS  Google Scholar 

  21. Brynhildsen, L., and Rosswall, T., Effects of cadmium, copper, magnesium, and zinc on the decomposition of citrate by aKlebsiella sp. Appl. envir. Microbiol.55 (1989) 1375–1379.

    CAS  Google Scholar 

  22. Bunch, R.L., and Ettinger, M.B., Biodegradability of potential organic substitutes for phosphates. Proc. 22nd Ind. Waste Conf., Purdue Eng. Extn. Ser. No. 129, pp. 393–396, 1967.

    Google Scholar 

  23. Burrows, K.C., and Hulbert, M.H., Release of heavy metals from sediments: Preliminary comparison of laboratory and fiel studies, in: Marine Chemistry in the Coastal Environment, pp. 382–393. Ed. T.M. Church. ACS Symposium Series. American Chemical Society, Washington, DC 1975.

  24. Chakrabarty, A.M., Plasmids inPseudomonas. A. Rev. Genet.10 (1976) 7–30.

    CAS  Google Scholar 

  25. Chanmugathas, P., and Bollag, J.-M., Mobilization of cadmium in soil under aerobic and anaerobic and anaerobic conditions. J. envir. Anal.16 (1987) 161–167.

    CAS  Google Scholar 

  26. Charley, R.C., and Bull, A.T., Bioaccumulation of silver by a multispecies community of bacteria. Arch. Microbiol.123 (1979) 239–244.

    CAS  PubMed  Google Scholar 

  27. Cole, M.A., Solubilization of heavy metal sulfides by heterotrophic soil bacteria. Soil Sci.127 (1979) 313–317.

    CAS  Google Scholar 

  28. Cox, C.D., and Graham, R., Isolation of an iron-binding compound fromPseudomonas aeruginosa. J. Bact.127 (1979) 357–364.

    Google Scholar 

  29. DiSpirito, A., and Tuovinen, O.H., Oxygen uptake coupled with uranous sulfate oxidation byThiobacillus ferrooxidans andT. acidophilus. Geomicrobiol. J.2 (1981) 272–291.

    Google Scholar 

  30. Duff, R.P., Webley, D.M., and Scott, R.O., Solubilization of minerals and related materials by 2-ketogluconic acid-producing bacteria. Soil Sci.95 (1963) 105–114.

    CAS  Google Scholar 

  31. Edvardsson, U.G., Precipitation and fixation of uranium in reduced environment simulation in a continuous culture of sulfate-reducing bacteria. Contributions in Microbial Geochemistry, Department of Geology, University of Stockholm, No. 5, 1984. ISSN 0348-9302, ISBN 91-7146-622-3.

  32. Ehrlich, H.L., Geomicrobiology. Marcel Dekker Inc., New York 1981.

    Google Scholar 

  33. Fedorak, P.M., Westlake, D.W.S., Anders, C., Kratochvil, B., Motkosky, N., Anderson, W.B., and Huck, P.M., Microbial release of226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes. Appl. envir. Microbiol.52 (1986) 262–268.

    CAS  Google Scholar 

  34. Ferris, F.G., Fyfe, W.S., and Beveridge, T.J., Bacteria as nucleation sites for anthigenic minerals in a metal-contaminated lake sediment. Chem. Geol.63 (1987) 225–232.

    CAS  Google Scholar 

  35. Ferris, F.G., Fyfe, W.S., and Beveridge, T.J., Metallic ion binding byBacillus subtilis: Implications for the fossilization of microorganisms. Geology16 (1987) 149–152.

    Google Scholar 

  36. Ferris, F.G., Schultze, S., Witten, T.C., Fyfe, W.S., and Beveridge, T.J., Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl. envir. Microbiol.55 (1989) 1249–1257.

    CAS  Google Scholar 

  37. Fisher, J.R., Bacterial leaching of Elliot Lake uranium ore. Annual Western Meeting, Winnipeg. Trans. Canadian Institute of Mining and Metallurgy LXIX (1966) 167–171.

    Google Scholar 

  38. Francis, A.J., Dodge, C.J., Rose, A.W., and Ramirez, A., Aerobic and anaerobic microbial dissolution of toxic metals from coal waste: Mechanism of action. Envir. Sci. Technol.23 (1989) 435–441.

    CAS  Google Scholar 

  39. Francis, A.J., and Dodge, C.J., Anaerobic microbial dissolution of transition and heavy metal oxides. Appl. envir. Microbiol.54 (1988) 1009–1014.

    CAS  Google Scholar 

  40. Francis, A.J., and Dodge, C.J., Effects of lead oxide and iron on glucose fermentation byClostridium sp. Arch. envir. Contam. Toxic.16 (1987) 491–497.

    CAS  Google Scholar 

  41. Francis, A.J., and Dodge, C.J., Anaerobic bacterial dissolution of lead oxide. Arch. envir. Contam. Toxic.15 (1986) 611–616.

    CAS  Google Scholar 

  42. Francis, A.J., Microbial transformations of natural organic compounds and radionuclides in subsurface environments. Proc. of the Workshop on the Effects of Natural Organic Compounds and of Microorganisms on Radionuclide Transport, OECD, RWM-6, pp. 39–49. Nuclear Energy Agency, Paris, France 1986.

    Google Scholar 

  43. Francis, A.J., Low-level radioactive wastes in subsoils, in: Soil Reclamation Processes: Microbiological Analyses and Applications, pp. 279–331. Eds R.L. Tate and D. Klein. Marcel Dekker, Inc., New York 1985.

    Google Scholar 

  44. Francis, A.J., Microbial transformation of low-level radioactive waste, in: Environmental Migration of Long-lived Radionuclides, pp. 415–429. IAEA-SM-257/72. Vienna 1982.

  45. Francis, A.J., Dobbs, S., and Nine, B.J., Microbial activity of trench leachates from shallow-land, low-level radioactive disposal sites. Appl. envir. Microbiol.40 (1980) 108–113.

    CAS  Google Scholar 

  46. Francis, A.J., Iden, C.R., Nine, B.J., and Chang, C.K., Characterization of organics in leachates from the low-level radioactive waste disposal sites. Nucl. Technol.50 (1980) 158–163.

    CAS  Google Scholar 

  47. Francis, A.J., Dobbs, S., and Doering, R.F., Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste. Nucl. chem. Waste Management1 (1980) 153–159.

    CAS  Google Scholar 

  48. Francis, A.J., Dodge, C.J., Gillow, J.B., and Cline, J.E., Microbial transformations of uranium in wastes. Second International Conference on Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphrere. Monterey, California, November 6–10, 1989.

  49. Francis, A.J., and Dodge, C.J., Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide. Envir. Sci. Technol.24 (1990) 373–378.

    CAS  Google Scholar 

  50. Giesy, J.P., and Paine, D., Effects of naturally occurring aquatic organic fractions on241Am uptake byScenedesmus obliquus (Chlorophyceae) andAeromonas hydrophila (Pseudomonadaecae). Appl. envir. Microbiol.33 (1977) 89–96.

    CAS  Google Scholar 

  51. Ghiorse, W.C., Microbial reduction of managanese and iron, in: Biology of Anaerobic Microorganisms. pp. 305–331. Ed. A.J.B. Zehnder. John Wiley and Sons, Inc., New York 1988.

    Google Scholar 

  52. Grogan, H.A., The significance of microbial activity in a deep repository for low and intermediate level wastes. 78 p. Nagra Report Interner Bericht 87-OS. Nagra, Switzerland 1987.

    Google Scholar 

  53. Grogan, H.A., and West, J.M., Integration of laboratory and modelling studies of microbial processes relevant to nuclear waste management. 36 p. Nagra Report Interner Bericht 88-54. Nagra, Switzerland 1987.

    Google Scholar 

  54. Grossbard, E., and Stranks, D.R., Translocation of cobalt-60 and cesium-137 by fungi in agar and soil cultures. Nature184 (1959) 310–314.

    CAS  PubMed  Google Scholar 

  55. Harrison, A.P., Microbial succession and mineral leaching in an artificial coal spoil. Appl. envir. Microbiol.36 (1978) 861–869.

    CAS  Google Scholar 

  56. Harrison, A.P., The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. A. Rev. Microbiol.38 (1984) 265–292.

    CAS  Google Scholar 

  57. Hassler, R.A., Klein, D.A., and Meglen, R.R., Microbial contributions to soluble and volatile arsenic dynamics in retorted oil shale. J. envir. Qual.13 (1984) 466–470.

    Google Scholar 

  58. Jayaram, K.M.V., Dwivedy, K.K., Bhurat, M.C., and Kulshrestha, S.G., A study of the influence of microflora on the genesis of uranium occurrences at Udaisagar, Udaipur District, Rajasthan. IAEA-SM-183/31, 89–98, 1974.

  59. Johnson, J.E., Svalberg, S., and Paine, D., The study of plutonium in aquatic systems of the Rocky Flats environs. Final Technical Report to Dow Chemical Co., Contract No. 41493-F. Department of Animal Sciences and the Department of Radiology and Radiation Biology, Colorado State University, Fort Collins, CO 1974.

    Google Scholar 

  60. Jones, J.G., Gardener, S., and Simon, B.M., Reduction of ferric iron by heterotrophic bacteria in lake sediments. J. gen. Microbiol.130 (1984) 45–51.

    CAS  Google Scholar 

  61. Kauffman, J.W., Laughlin, W.C., and Baldwin, R.A., Microbiological treatment of uranium mine waters. Envir. Sci. Technol.20 (1986) 243–248.

    CAS  Google Scholar 

  62. Kee, N.S., and Bloomfield, C., The solution of some minor element oxides by decomposing plant materials. Geochim. cosmochim. Acta24 (1961) 206–225.

    CAS  Google Scholar 

  63. Kee, N.N., and Bloomfield, C., The effect of flooding and aeration on the mobility of certain trace elements in soils. Plant Soil16 (1962) 108–135.

    CAS  Google Scholar 

  64. Kelley, D.P., Norris, P.R., and Brierley, C.L., Microbiological methods for the extraction and recovery of metals. Soc. gen. Microbiol. Symp.29 (1979) 263–308.

    Google Scholar 

  65. Knox, K., and Jones, P.H., complexation characteristics of sanitary landfill leachates. Water. Res.13 (1979) 839–846.

    CAS  Google Scholar 

  66. Kulshrestha, S.C., Jayaram, K.M.V., and Dar, K.K., A study of the physiology of sulfur-oxidizing bacteria and its effect on uranium mobilization and leaching at Udaisagar, Udaipur district, Rajasthan. NML Techn. J.15 (1973) 42–46.

    CAS  Google Scholar 

  67. Leong, J., Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. A. Rev. Phytopath.24 (1986) 187–209.

    CAS  Google Scholar 

  68. Lovley, D.R., and Phillips, E.J.P., Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. envir. Microbiol.51 (1986) 683–689.

    CAS  Google Scholar 

  69. Lundgren, D.G., Valkova-Valchanova, M., and Reed, R., Chemical Reactions Important in Bioleaching and Bioaccumulation Biotechnology and Bioengineering Symp. No. 16, 7–22. John Wiley and Sons, Inc., New York 1986.

    Google Scholar 

  70. Martin, J.P., Ervin, J.O., and Shepherd, R.A., Decomposition of iron, aluminum, zinc, and copper salts as complexes of some microbial and plant polysaccharides in soil. Soil Sci. Soc. Am. Proc.30 (1966) 196–200.

    CAS  Google Scholar 

  71. Martin, J.P., and Richards, S.J., Decomposition and binding action of a polysaccharide fromChromabacterium violaceum in soil. J. Bact.85 (1963) 1288–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mathur, A.K., and Dwivedy, K.K., Biogenic approach to the treatment of uranium mill effluents. Uranium4 (1988) 385–394.

    CAS  Google Scholar 

  73. McGready, R.G.L., Bland, C.J., and Gonzales, D.E., Preliminary studies on the chemical, physical and biological stability of Ba/Ra-SO4 precipitates. Hydrometallurgy5 (1980) 109–116.

    Google Scholar 

  74. McCready, R.G.L., and Krouse, H.R., Sulfur isotope fractionation byDesulfovibrio vulgaris during metabolism of BaSO4. Geomicrobiol. J.2 (1980) 55–62.

    CAS  Google Scholar 

  75. McGahan, D.J., Survey of microbiological effects in low-level radioactive waste disposed of to land, in: Proceedings of the International Conference on Environmental Contaminations, pp. 1–24. CEP Consultants Ltd., Edinburgh, UK 1984.

    Google Scholar 

  76. McKinley, I.G., West, J.M., and Grogan, H.A., An analytical overview of the consequences of microbial activity in a Swiss HLW repository. 107 p. Technical Report 85-43. Nagra, Switzerland 1985.

    Google Scholar 

  77. McLaren, A.D., and Peterson, G.H., Soil Biochemistry. Marcel Dekker, Inc., New York 1967.

    Google Scholar 

  78. Means, J.L., Kucak, T., and Crerar, D.A., Relative degradation rates of NTA, EDTA, and DTPA and environmental implications. Envir. Pollut. (Ser. B)1 (1980) 45–60.

    CAS  Google Scholar 

  79. Menon, S.H., Wagner, N. Jr, and Tsan, M.-F., Studies on gallium accumulation in inflammatory lesions. I. Uptake byStaphylococcus aureus: Concise communication. J. nucl. Med.19 (1978) 44–47.

    CAS  PubMed  Google Scholar 

  80. Munch, J.C., and Ottow, J.C.G., Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Soil Soc.129 (1980) 15–21.

    CAS  Google Scholar 

  81. Munch, J.C., and Ottow, J.C.G., Reductive transformation mechanism of ferric oxides in hydromorphic soils. Ecol. Bull. NFR (Naturvetensk. Forskningradet)35 (1983) 383–394.

    CAS  Google Scholar 

  82. Munier-Lamy, C., and Berthelin, J., Formation of polyelectrolyte complexes with the major elements Fe and Al and the trace elements U and Cu during heterotrophic microbial leaching of rocks. Geomicrobiol. J.5 (1987) 119–147.

    CAS  Google Scholar 

  83. Murr, L.E., Torma, A.E., and Brierley, J.A. (Eds), Metallurgical Applications of Bacterial Leaching and Related Phenomenon. Academic Press, New York 1978.

    Google Scholar 

  84. Nriagu, J.O., Lead in the atmosphere, in: The Biogeochemistry of Lead in the Environment, Part B, pp. 137–184. Ed. J.O. Nriagu. North-Holland Biomedical Press, New York 1978.

    Google Scholar 

  85. Olson, G.T., McFeters, G.A., and Temple, K.L., Occurrence and activity of iron-and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils. Microb. Ecol.7 (1981) 39–50.

    CAS  PubMed  Google Scholar 

  86. Ponnamperuma, F.N., The chemistry of submerged soils. Adv. Agronomy24 (1972) 29–95.

    CAS  Google Scholar 

  87. Powell, P.E., Cline, G.R., Reidd, C.P.P., and Szaniszlo, P.J., Occurrence of hydroxamate siderophore iron chelaters in soils. Nature287 (1980) 833–834.

    CAS  Google Scholar 

  88. Premuzic, E.T., Francis, A.J., Lin, M., and Schubert, J., Induced formation of chelating agents byPseudomonas aeruginosa grown in the presence of Thorium and Uranium. Arch. envir. Contam. Toxic.14 (1985) 759–768.

    CAS  Google Scholar 

  89. Premuzic, E.T., Lin, M., Francis, A.J., and Schubert, J., Production of chelating agents byPseudomonas aeruginosa grown in the presence of Thorium and Uranium, in. Speciation of Fission and Activation Products in the Environment, pp. 391–397. Eds R.A. Bulman and J.R. Cooper. Elsevier Applied Science Publishers, New York 1986.

    Google Scholar 

  90. Radway, J.C., Tuttle, J.H., Fendinger, N.J., and Means, J.C., Microbially mediated leaching of low-sulfur coal in experimental coal columns. Appl. envir. Microbiol.53 (1987) 1056–1063.

    CAS  Google Scholar 

  91. Rodgers, G.C., and Neilands, J.B., Microbial iron transport compounds, in: Handbook of Microbiology, vol. 2, pp. 823–830, Eds A.I. Laskin and H.A. Lechevalier. Chemical Rubber Co., Cleveland, Ohio 1973.

    Google Scholar 

  92. Schinner, F., and Burgstaller, W., Extraction of zinc from industrial waste by aPenicillium sp. Appl. envir. Microbiol.55 (1989) 1153–1156.

    CAS  Google Scholar 

  93. schnitzer, M., and Kahn, S.U., Humic Substances in the Environment. Marcel Dekker, Inc., New York 1972.

    Google Scholar 

  94. Schroth, M.N., and Hancock, J.G., Disease-suppressive soil and root-colonizing bacteria. Science216 (1982) 1376–1381.

    CAS  PubMed  Google Scholar 

  95. Schubert, J.P., and Miller, R.M., Subsurface oxidation of pyritic coal cleaning wastes by chemoautotrophic bacteria, in: 1982 Symposium on Surface Mining Hydrology, Sedimentology and Reclamation, December 5–10, 1982, pp. 623–634. University of Kentucky, Lexington, Kentucky 1982.

    Google Scholar 

  96. Shindo, H., and Kuwatsuka, S., Behavior of phenolic substances in the decaying process of plants. V. Elution of heavy metals with phenolic acids from soil. Soil Sci. Plant. Nutr.23 (1977) 185–193.

    CAS  Google Scholar 

  97. Shumate, II, S.E., Strandberg, G.W., and Parrott, J.F. Jr, Biological removal of metal ions from aqueous process streams. Biotechnology and Bioengineering Symp. No. 8, 13–20. John Wiley and Sons, Inc., New York 1978.

    Google Scholar 

  98. Silver, M., and Ritcey, G.M., Lysimeter investigations on uranium tailings at CANMET. CIM Bull.75 (1982) 134–143.

    Google Scholar 

  99. Silver, M., and Torma, A.E., Oxidation of metal sulfides byThiobacillus ferrooxidans grown on different substrates. Can. J. Microbiol.20 (1974) 141–147.

    CAS  PubMed  Google Scholar 

  100. Snow, G.A., Mycobactins: Iron-chelating growth factors from Mycobacteria. Bact. Rev.34 (1980) 99–125.

    Google Scholar 

  101. Stone, A.T., Adsorption of organic reductants and subsquent electron transfer on metal oxide surfaces, in: Geochemical Processes at Chemical Surfaces, pp. 446–461. Eds J.A. Davis and K.F. Hayes. American Chemical Society, Washington, DC 1986.

    Google Scholar 

  102. Stone, A.T., Microbial metabolites and the reductive dissolution of manganese oxides. Oxalate and pyruvate. Geochim. cosmochim. Acta51 (1987) 919–925.

    CAS  Google Scholar 

  103. Stone, A.T., and Morgan, J.J., Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 2. Survey of the reactivity of organics. Envir. Sci. Technol.18 (1984) 617–624.

    CAS  Google Scholar 

  104. Stone, A.T., and Morgan, J.J., Reductive dissolution of metal oxides, in: Aquatic Surface Chemistry: Chemical Processes at the Particle Water Interface, pp. 221–254. Ed. W. Stumm. John Wiley and Sons, Inc., New York 1987.

    Google Scholar 

  105. Strandberg, G.W., Shumate, II, S.E., and Parrott, J.R. Jr, Microbial cells as biosorbants for heavy metals: Accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. envir. Microbiol.41 (1981) 237–245.

    CAS  Google Scholar 

  106. Strandberg, G.W., Shumate, II, S.E., Parrott, J.R. Jr, and North, S.E., Microbial accumulation of uranium, radium, and cesium, in: Environmental Speciation and Monitoring Needs for Trace Metal-Containing Substances from Energy-Related Processes, pp. 274–283. Eds F.E. Brinckman and R.H. Fish. NBS Special Publication 618, November 1981.

  107. Strayer, R., and Davis, E.C., Reduced sulfur in ashes and slags from the gasification of coals: Availability for chemical and microbial oxidation. Appl. envir. Microbiol.45 (1983) 743–747.

    CAS  Google Scholar 

  108. Summers, A.O., and Silver, S., Microbial transformations of metals. A. Rev. Microbiol.32 (1978) 637–672.

    CAS  Google Scholar 

  109. Summers, R.V., Rupp, G.L., and Gherni, S.A., Physical-chemical characteristics of utility solid wastes. EA-3236, RP1487-12. Final Report. Electric Power Research Institute, Palo Alto, California 1983.

    Google Scholar 

  110. Sunda, W.G., Huntsman, S.A., and Harvey, G.R., Photoreduction of manganese oxides in sea water and its geochemical and biological implications. Nature301 (1983) 234–236.

    CAS  Google Scholar 

  111. Tiedje, J.M., Influence of environmental parameters on EDTA biodegradation in soils and sediments. J. envir. Qual.6 (1977) 21–26.

    CAS  Google Scholar 

  112. Torma, A.E., and Sakaguchi, H., Relations between the solubility product and the rate of metal sulfide oxidation byThiobacillus ferrooxidans. J. Ferment. Technol.56 (1978) 173–178.

    CAS  Google Scholar 

  113. Tornabene, T.G., and Edwards, H.W., Microbial uptake of lead. Science176 (1973) 1334–1335.

    Google Scholar 

  114. Tsezos, M., and Volesky, B., Biosorption of uranium and thorium. Biotechnol. Bioeng.23 (1981) 583–604.

    CAS  Google Scholar 

  115. Tugel, J.B., Hines, M.E., and Jones, G.E., Microbial iron reduction by enrichment cultures isolated from estuarine sediments. Appl. envir. Microbiol.52 (1986) 1167–1172.

    CAS  Google Scholar 

  116. Tuovinen, O.H., Acid leaching of uranium ore materials with microbial catalysis. Biotechnology and Bioengineering Symp. No. 16, pp. 65–72. John Wiley and Sons, Inc., New York 1986.

    Google Scholar 

  117. Waite, T.D., and Morel, F.M.M., Photoreductive dissolution of colloidal iron oxides in natural waters. Envir. Sci. Technol.19 (1984) 860–868.

    Google Scholar 

  118. Warren, C.B., Biodegradation of nitrilotriacetic acid and NTA-metal ion complexes, in: Survival in Toxic Environments. Eds M.A.Q. Khan and J.P. Beberka Jr. Academic Press, New York 1974.

    Google Scholar 

  119. West, J.M., Christofi, N., and McKinley, I.G., An overview of recent microbiological reserach relevant to the geological disposal of nuclear waste. Radioactive Waste Management and the Nuclear Fuel Cycle6 (1985) 79–95.

    CAS  Google Scholar 

  120. West, J.M., McKinley, I.G., and Chapman, N.A., Microbes in deep geological systems and their possible influence on radioactive waste disposal. Radioactive Waste Management and the Nuclear Fuel Cycle3 (1982) 1–15.

    CAS  Google Scholar 

  121. West, J.M., McKinley, I.G., and Vialta, A., The influence of microbial activity on the movement of uranium at Osamu Utsumi mine, Pocos de Caldas, Brazil, in: Scientific Basis for Nuclear Waste Management12 (1988) 1–7.

  122. Weiss, A.J., and Colombo, P., Eds, Evaluation of isotope migration — land burial water chemistry at commercially operated low-level radioactive waste disposal sites. Status Report through September 30, 1979. NUREG/CR-1289, BNL-NUREG-51143. March 1980.

  123. Wildung, R.E., and Garland, T.R., The relationship of microbial processes to the fate and behavior of trasuranic elements in soils, plants, and animals, in: Transuranic Elements in the Enviroment, pp. 300–335. Ed. W.C. Hanson. DOE/TIC-22800, Technical Information Center/U.S. Dept of Energy, Washington, DC 1980.

    Google Scholar 

  124. Wildung, R.E., Garland, T.R., and Drucker, H., Nickel complexes with soil microbial metabolites — mobility and speciation in soils, in: Chemical Modeling in Aqueous Systems, pp. 181–200. Monograph No. 93, American Chemical Society, Washington, DC 1979.

    Google Scholar 

  125. Wong, P.T.S., Chan, Y.K., and Luxon, P.L., Methylation of lead in the environment. Nature253 (1975) 263–264.

    CAS  PubMed  Google Scholar 

  126. Wood, J.M., Biological cycles for toxic elements in the environment. Science183 (1974) 1049–1052.

    CAS  PubMed  Google Scholar 

  127. Woolfolk, C.A., and Whiteley, M., Reduction of inorganic compounds with molecular hydrogen byMicrococcus lactilyticus. 1. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bact.84 (1962) 647–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zajic, J.E., Microbial Biogeochemistry. Academic Press, New York 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, A.J. Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes. Experientia 46, 840–851 (1990). https://doi.org/10.1007/BF01935535

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935535

Key Words

Navigation