Experientia

, Volume 51, Issue 2, pp 99–105 | Cite as

Alzheimer's disease: fundamental and therapeutic aspects

  • M. Schorderet
Reviews

Abstract

Alzheimer's disease is the most common type of progressive and debilitating dementia affecting aged people. In some early — as well as late-onset familial cases, a genetic linkage with chromosomes 14, 21 (early-onset) or 19 (late-onset) has been indicated. Furthermore, a direct or indirect role has been attributed to normal or structurally altered amyloid β-protein (concentrated in senile plaques) and/or excessively phosphorylated tau protein (located in neurofibrillary tangles). Degeneration of cholinergic neurons and concomitant impairment of cortical and hippocampal neurotransmission lead to cognitive and memory deficits. Several compounds are being tested in attempts to prevent and/or cure Alzheimer's disease, including tacrine, which has very modest efficacy in a sub-group of patients, and new acetylcholinesterase inhibitors. Pilot experiments have also been launched using nerve growth factor (NGF) to prevent or stabilize the processes of cholinergic pathway degeneration. Alternatively, antioxidants, free radical scavengers and/or non steroidal anti-inflammatory agents may be screened as potential therapies for neurodegenerative diseases induced by multiple endogenous and/or exogenous factors. The recent use of transgenic mice, in parallel with other genetic, biochemical and neurobiological systems, in vivo and/or in vitro (cell cultures), should accelerate the discovery and development of specific drugs for the treatment of Alzheimer's disease.

Key words

Alzheimer's disease chromosomes 14, 19, 21 amyloid β-protein spirochetes tau protein choline transporter cholinergic neurons acetylcholinesterase inhibitors tacrine antioxidants free radicals nerve growth factor (NGF) indomethacin apoptosis nitric oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

ReferencesReferences

  1. 1.
    Ashall, F., and Goate, A.M., Role of the β-amyloid precursor protein in Alzheimer's disease. Trends biochem. Sci.19 (1994) 42–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Barinaga, M., Neurotrophic factors enter the clinic. Science264 (1994) 772–774.PubMedGoogle Scholar
  3. 3.
    Boddeke, E., Hugtenburg, J., Jap, W., Heynis, J., and Van Zwieten, P., New anti-ischaemic drugs: cytoprotective action with no primary haemodynamic effects. Trends pharmac. Sci.10 (1989) 397–400.CrossRefGoogle Scholar
  4. 4.
    Borroni, E., Damsma, G., Giovacchini, C. Mutel, V., Jakob-Rötne, R., and Da Prada, M., A novel acetylcholinesterase inhibitor, Ro 46-5934, which interacts with muscarinic M2 receptors. Biochem. Soc. Trans.22 (1994) 755–758.PubMedGoogle Scholar
  5. 5.
    Buttke, T.M., and Sandstrom, P.A., Oxidative stress as a mediator of apoptosis. Immunol. Today15 (1994) 7–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Chatellier, G., and Lacomblez, L., Tacrine (tetrahydroaminoacridine; THA) and lecithin in senile dementia of the Alzheimer type: a multicentre trial. Br. med. J.300 (1990) 495–499.Google Scholar
  7. 7.
    Choi, D.W., Foe or friend to the injured brain? Proc. natl Acad. Sci. USA90 (1993) 9741–9743.PubMedGoogle Scholar
  8. 8.
    Chun, M.R., and Mayeux, R., Alzheimer's disease. Curr Opin. Neurol.7 (1994) 299–304.PubMedGoogle Scholar
  9. 9.
    Collerton, D., Cholinergic function and intellectual decline in Alzheimer disease. Neurosci.19 (1986) 1–28.CrossRefGoogle Scholar
  10. 10.
    Cook, P., and James, I., Cerebral vasodilators. New Engl. J. Med.305 (1981) 1508–1513; 1560–1564.PubMedGoogle Scholar
  11. 11.
    Coyle, J.T., and Puttfarcken, P., Oxidative stress, glutamate, and neurodegenerative disorders. Science262 (1993) 689–695.PubMedGoogle Scholar
  12. 12.
    Cummings, J.L., Clinical features and treatment of Alzheimer's disease. Curr. Opin. Neurol. Neurosurg.3 (1990) 90–97.Google Scholar
  13. 13.
    Davis, K.L., Thal, L.J., Gamzu, E.R., Davis, C.S., Woolson, R.F., Gracon, S.I., et al., A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disase. New Engl. J. Med.327 (1992) 1253–1259.PubMedGoogle Scholar
  14. 14.
    Eagger, S.A., Levy, R., and Sahakian, B.J., Tacrine in Alzheimer's disease. Lancet337 (1991) 989–992.CrossRefPubMedGoogle Scholar
  15. 15.
    Faden, A.I., and Salzman, S., Pharmacological strategies in CNS trauma. Trends pharmac. Sci.13 (1992) 29–35.CrossRefGoogle Scholar
  16. 16.
    Farlow, M., Gracon, S.I., Hershey, L.A., Lewis, K.W., Sadowsky, C.H., and Dolan-Ureno, J., A controlled trial of tacrine in Alzheimer's disease. J. Am. med. Ass.268 (1992) 2523–2529.CrossRefGoogle Scholar
  17. 17.
    Franssen, E.H., Kluger, A., Torossian, C.L., and Reisberg, B., The neurologic syndrome of severe Alzheimer's disease Relationship to functional decline. Archs Neurol.50 (1993) 1029–1039.Google Scholar
  18. 18.
    Gandy, S., and Greengard, P., Amyloidogenesis in Alzheimer's disease: some possible therapeutic opportunities. Trends pharmac. Sci.13 (1992) 108–113.CrossRefGoogle Scholar
  19. 19.
    Garcia, I., Martinou, I., Tsujimoto, Y., and Martinou, J.C., Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science258 (1992) 302–304.PubMedGoogle Scholar
  20. 20.
    Garthwaite, J., Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci.14 (1991) 60–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Gauthier, S., Bouchard, R., Lamontagne, A., Bailey, P., Bergman, H., et al., Tetrahydroaminoacridine-lecithin combination treatment in patients with intermediate-stage Alzheimer's disease. New Engl. J. Med.322 (1990) 1272–1276.PubMedGoogle Scholar
  22. 22.
    Gentleman, S.M., Graham, D.I., and Roberts, G.W., Molecular pathology of head trauma: altered βAPP metabolism and the aetiology of Alzheimer's disease. Prog. Brain Res.96 (1993) 237–246.PubMedGoogle Scholar
  23. 23.
    Giacobini, E., Pharmacotherapy of Alzheimer's disease: New drugs and novel strategies, in: Alzheimer's Disease: Advances in Clinical and Basic Research, pp. 529–538. Eds B. Corain, K. Iqbal, M. Nicolini, B. Winblad, H. Wisniewski and P. Zatta. John Wiley & Sons Ltd. Chichester-New York-Brisbane-Toronto, Singapore 1993.Google Scholar
  24. 24.
    Goa, K.L., and Fitton, A., Velnacrine in Alzheimer's disease. CNS Drugs1 (1994) 232–240.Google Scholar
  25. 25.
    Goate, A., Chartier-Harlin, M.C. Mullan, M., Brown, J., Crawford, F., Fidani, L. et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature349 (1991) 704–706.PubMedGoogle Scholar
  26. 26.
    Goedert, M., Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci.16 (1993) 460–465.CrossRefPubMedGoogle Scholar
  27. 27.
    Haass, C., and Selkoe, D.J., Cellular processing of β-amyloid precursor protein and the genesis of amyloid-β-peptide. Cell75 (1993) 1039–1042.CrossRefPubMedGoogle Scholar
  28. 28.
    Hall, E.D., Cerebral ischaemia, free radicals and antioxidant protection. Biochem. Soc. Trans.21 (1993) 334–339.PubMedGoogle Scholar
  29. 29.
    Hammond, R.R., Gage, F.H., and Terry, R.D., Alzheimer's disease and spirochetes; a questionable relationship. NeuroReport4 (1993) 840.PubMedGoogle Scholar
  30. 30.
    Haxby, J.V., Grady, C.L., Duara, R., Schlageter, N., Berg, G., and Rapoport, S.I., Neocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer's-type dementia. Archs Neurol.43 (1986) 882–885.Google Scholar
  31. 31.
    Heise, G.A., Facilitation of memory and cognition by drugs. Trends pharmac. Sci.8 (1987) 65–68.CrossRefGoogle Scholar
  32. 32.
    Hirsch, D.B., Steiner, J.P., Dawson, T.M., Mammen, A., Hayek, E., and Snyder, S.H., Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr. Biol.3 (1993) 749–754.CrossRefPubMedGoogle Scholar
  33. 33.
    Hockenbery, D.M. Oltvai, Z.N., Yin, X.-M., Milliman, C.L., and Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell75 (1993) 241–251.PubMedGoogle Scholar
  34. 34.
    Hoyer, S., Abnormalities in brain glucose utilization and its impact on cellular and molecular mechanisms in sporadic dementia of Alzheimer type, in: Alzheimers Disease: Amyloid Precursor Proteins, Signal Transduction, and Neuronal Transplantation, Ann. N.Y. Acad. Sci., vol. 695, pp. 77–80. Eds R.M. Nitsch, J.H. Growdon, S. Corkin, and R.J. Wurtman, New York Acad. Sciences, New York 1993.Google Scholar
  35. 35.
    Hung, A.Y., Haass C., Nitsch, R.M., Qiu, W.Q., Citron, M., Wurtman, R.J., Growdon, J.H., and Selkoe, D.J., Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J. biol. Chem.268 (1993) 22959–22962.PubMedGoogle Scholar
  36. 36.
    Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Örd, T., and Bredesen, D.E., Bcl-2 inhibition of neural death: decreased generation of reative oxygen species. Science262 (1993) 1274–1277.PubMedGoogle Scholar
  37. 37.
    Katzman, R., and Saitoh, T., Advances in Alzheimer's disease. FASEB. J.5 (1991) 278–286.PubMedGoogle Scholar
  38. 38.
    Korsmeyer, S.J., Shutter, J.R., Veis, D.J., Merry, D.E., and Oltvai, Z.N., Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Sem. in Cancer Biol.4 (1993) 327–332.Google Scholar
  39. 39.
    Lamb, B.T., Sidodia, S.S., Lawler, A.M., Slunt, H.H., Kitt, C.A., Kearns, W.G. et al.., Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice. Nat. Genet.5 (1993) 22–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Lamy, P.P., The role of cholinesterase inhibitors in Alzheimer's disease. CNS Drugs1 (1994) 146–165.Google Scholar
  41. 41.
    Lapchak, P.A., Nerve groth factor pharmacology: Application to the treatment of cholinergic neurodegeneration in Alzheimer's disease. Expl. Neurol.124 (1993) 16–20.CrossRefGoogle Scholar
  42. 42.
    Lee, V.M.-Y., Balin, B.J., Otvos, L. Jr., and Trojanowski, J.Q., A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science251 (1991) 675–678.PubMedGoogle Scholar
  43. 43.
    Lemke, M., Frei, B., Ames, B.N., and Faden, A.I., Decreases in tissue levels of ubiquinol-9 and 10, ascorbate and α-tocopherol following spinal cord impact trauma in rats. Neurosci. Lett.108 (1990) 201–206.CrossRefPubMedGoogle Scholar
  44. 44.
    Lowe, G.D.O., Drugs in cerebral and peripheral arterial disease. Lancet300 (1990) 524–528.Google Scholar
  45. 45.
    Mandelkow, E.-M., and Mandelkow, E., Tau as a marker for Alzheimer's disease. Trends biochem. Sci.18 (1993) 480–483.CrossRefPubMedGoogle Scholar
  46. 46.
    Martin, S.J., Green, D.R., and Cotter, T.G., Dicing with death: dissecting the components of the apoptosis machinery. Trends biochem. Sci.19 (1994) 26–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Marx, J., Alzheimer's debate boils over. Science257 (1992) 1336–1338.PubMedGoogle Scholar
  48. 48.
    Mattson, M.P., Cheng, B., and Smith-Swintosky, V.L., Mechanisms of neurotrophic factor protection against calcium-and free radical-mediated excitotoxic injury: implications for treating neurodegenerative disorders. Expl Neurol.124 (1993) 89–95.CrossRefGoogle Scholar
  49. 49.
    Miklossy, J., Alzheimer's disease — a spirochetosis? NeuroReport4 (1993) 841–848.PubMedGoogle Scholar
  50. 50.
    Miklossy, J., Kasas, S., Janzer, R.C., Ardizzoni, F., and Van der Loos, H., Further ultrastructural evidence that spirochaetes may play a role in the aetiology of Alzheimer's disease. NeuroReport5 (1994) 1201–1204.PubMedGoogle Scholar
  51. 51.
    Molloy, D.W., and Cape, R.D.T., Acute effects of oral pyridostigmine on memory and cognitive function in SDAT. Neurobiol. Aging10 (1989) 199–204.CrossRefPubMedGoogle Scholar
  52. 52.
    Mullan, M., and Crawford, F., Genetic and molecular advances in Alzheimer's disease. Trends Neurosci.16 (1993) 398–402.CrossRefPubMedGoogle Scholar
  53. 53.
    Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K., Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res.541 (1991) 163–166.CrossRefPubMedGoogle Scholar
  54. 54.
    Nieto, A., Montejo de Garcini, E., Correas, I. and Avila, J., Characterization of tau protein present in microtubules and paired helical filaments of Alzheimer's disease patients's brain. Neuroscience37 (1990) 163–170.CrossRefPubMedGoogle Scholar
  55. 55.
    Olanow, C.W., A radical hypothesis for neurodegeneration. Trends Neurosci.16 (1993) 439–444.CrossRefPubMedGoogle Scholar
  56. 56.
    Olson, L., NGF and the treatment of Alzheimer's disease. Expl. Neurol.124 (1993) 5–15.CrossRefGoogle Scholar
  57. 57.
    Palmer, A.M., and DeKosky, S.T., Monoamine neurons in aging and Alzheimer's disease. J. neural Transm.91 (1993) 135–159.CrossRefGoogle Scholar
  58. 58.
    Pearson, B.E., and Choi, T.K., Expression of the human β-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc. natl Acad. Sci. USA90 (1993) 10578–10582.PubMedGoogle Scholar
  59. 59.
    Pollard, H.B., Rojas, E., and Arispe, N., β-Amyloid in Alzheimer's disease. CNS Drugs2 (1994) 1–6.Google Scholar
  60. 60.
    Raff, M.C., Barres, B.A., Burne, J.F., Coles, H.S., Ishizaki, Y., and Jacobson, M.D., Programmed cell death and the control of cell survival: Lessons from the nervous system. Science262 (1993) 695–700.PubMedGoogle Scholar
  61. 61.
    Reed, J.C., Bcl-2 and the regulation of programmed cell death. J. Cell Biol.124 (1994) 1–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Roberts, F., and Lazareno, S., Cholinergic treatments for Alzheimer's disease. Biochem. Soc. Trans.17 (1989) 76–79.PubMedGoogle Scholar
  63. 63.
    Rogers, J., Kirby, L.C., Hempelman, S.R., Berry, D.L., McGeer, P.L., Kaszniak, A.W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P., and Kogan, F., Clinical trial of indomethacin in Alzheimer's disease. Neurology43 (1993) 1609–1611.PubMedGoogle Scholar
  64. 64.
    Rogers, J., Inflammation and Alzheimer's disease. CNS Drugs1 (1994) 241–244.Google Scholar
  65. 65.
    Royston, M.C., Rothwell, N.J., and Roberts, G.W., Alzheimer's disease: pathology to potential treatments? Trends pharmac. Sci.13 (1992) 131–133.CrossRefGoogle Scholar
  66. 66.
    Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D., and Roses, A.D., Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. natl Acad. Sci. USA90 (1993) 9649–9653.PubMedGoogle Scholar
  67. 67.
    Schubert, D., Kimura, H., and Maher, P., Growth factors and vitamin E modify neuronal glutamate toxicity Proc. natl Acad. Sci. USA89 (1992) 8264–8267.PubMedGoogle Scholar
  68. 68.
    Selkoe, D.J., Biochemistry of altered brain proteins in Alzheimer's disease. A. Rev. Neurosci.12 (1989) 463–490.CrossRefGoogle Scholar
  69. 69.
    Selkoe, D.J., Physiological production of the β-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci.16 (1993) 403–409.PubMedGoogle Scholar
  70. 70.
    Shutske, G.M., Pierrat, F.A., Cornfeldt, M.L., Szewczak, M.R., Huger, F.P., Bores, G.M., Harontanian, V., and Davis, K.L., (±)-9-Amino-1,2,3,4-tetrahydroacridin-1-ol. A potential Alzheimer's disease therapeutic of low toxicity. J. med. Chem.31 (1988) 1278–1279.CrossRefPubMedGoogle Scholar
  71. 71.
    Sies, H., Strategies of antioxidant defense. Eur. J. Biochem.215 (1993) 213–219.CrossRefPubMedGoogle Scholar
  72. 72.
    Slotkin, T.A., Nemeroff, C.B., Bissette, G., and Seidler, F.J., Overexpression of the high affinity choline transporter in cortical regions affected by Alzheimer's disease. Evidence from rapid autopsy studies. J. clin. Invest.94 (1994) 696–702.PubMedGoogle Scholar
  73. 73.
    Spagnoli, A., and Tognoni, G., “Cerebroactive” drugs. Clinical pharmacology and therapeutic role in cerebrovascular disorders. Drugs26 (1983) 44–69.PubMedGoogle Scholar
  74. 74.
    Steiner, B., Mandelkow, E.M., Biernat, J., Gustke, N., Meyer, H.E., Schmidt, B., Mieskes, G., Söling, H.D., Drechsel, D., Kirschner, M.W., Goedert, M., and Mandelkow, E., Phosphorylation of microtubules associated protein tau: identification of the site for Ca+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J.9 (1990) 3539–3544.PubMedGoogle Scholar
  75. 75.
    Summers, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K., and Kling, A., Oral tetrahydroaminoacridine in long-term treatment of senile dementia. New Engl. J. Med.315 (1986) 1241–1245.PubMedGoogle Scholar
  76. 76.
    Uterman, G. The apolipoprotein E connection. Curr. Biol.4 (1994) 362–365.CrossRefPubMedGoogle Scholar
  77. 77.
    Vincent, I.J., and Davies, P., A protein kinase associated with paired helical filaments in Alzheimer's disease. Proc. natl Acad. Sci USA89 (1992) 2878–2882.PubMedGoogle Scholar
  78. 78.
    Walsh, T.J., Site-specific pharmacology for the treatment of Alzheimer's disease. Expl Neurol.124 (1993) 43–46.CrossRefGoogle Scholar
  79. 79.
    Watkins, P.B., Zimmerman, H.J., Knapp, M.J., Gracon, S.I., and Lewis, K.W., Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. J. Am. med. Assoc.271 (1994) 992–998.CrossRefGoogle Scholar
  80. 80.
    Wenk, G.L., Animal models of Alzheimer's disease, in: Animal Models of Neurological Disease, I Neurodegenerative Diseases, vol. 21, pp. 29–63. Eds A.A. Boulton, G.B. Baker, and R.F. Butterworth Neuromethods, Humana Press, Totowa, New Jersey 1992.Google Scholar
  81. 81.
    Wink, D.A., Hanbauer, I., Krishna, M.C., De Graff, W., Gamson, J., and Mitchell, J.B., Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. natl Acad. Sci. USA90 (1993) 9813–9817.PubMedGoogle Scholar
  82. 82.
    Yoshida, S., and Suzuki, N., Antiamnesic and cholinomimetic side-effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur. J. Pharmac.250 (1993) 117–124.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • M. Schorderet
    • 1
  1. 1.Département de PharmacologieCentre Médical UniversitaireGenève 4(Switzerland)

Personalised recommendations