Skip to main content

The Viability of Treatment Conditioned to the Pathophysiology of Alzheimer’s Disease

  • Chapter
  • First Online:
Pharmacological Treatment of Alzheimer's Disease

Abstract

In Alzheimer’s disease, amyloid-β biomarkers become abnormal decades before cognition starts to decline and also before detectable biomarkers of neurodegeneration. Reduced levels of acetylcholine receptors and loss of cholinergic neurons are among the major neuropathological events, usually precipitated by the accumulation of extracellular amyloid-β plaques and followed by the formation of intracellular neurofibrillary tangles. While synaptic dysfunction precedes the physical degeneration of the synapses, measures of synaptic density correlate better with dementia stage than amyloid-β or tau pathology. The cholinergic hypothesis states that degeneration of cholinergic neurons located in basal forebrain nuclei disrupts neurotransmission in presynaptic cholinergic terminals located in the limbic system and in the neocortex as a whole. These neurodegenerative mechanisms compromise hippocampal function leading to memory disturbances and then impair other higher cortical functions eventually leading to behavioral disturbances and, finally, to functional impairment. All of the mechanisms involved in amyloidogenesis and tau hyperphosphorylation show that therapeutic targets should include not only these molecules but also neurons, brain endothelium, pericytes, glial cells, and the myelin sheath. It remains to be seen if viability of treatment is actually related to amyloid-β and tau or if other key toxic misfolded proteins should be targeted as a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annerbrink K, Jönsson EG, Olsson M, Nilsson S, Sedvall GC, Anckarsäter H, Eriksson E. Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and monoamine metabolite concentrations in cerebrospinal fluid. Psychiatry Res. 2010;179:231–4.

    CAS  PubMed  Google Scholar 

  2. Aprahamian I, Stella F, Forlenza OV. New treatment strategies for Alzheimer’s disease: is there a hope? Indian J Med Res. 2013;138:449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barzilai N, Atzmon G, Derby CA, Bauman JM, Lipton RB. A genotype of exceptional longevity is associated with preservation of cognitive function. Neurology. 2006;67:2170–5.

    CAS  PubMed  Google Scholar 

  4. Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9:768–78.

    CAS  PubMed  Google Scholar 

  5. Bilbul M, Schipper HM. Risk profiles of Alzheimer disease. Can J Neurol Sci. 2011;38:580–92.

    PubMed  Google Scholar 

  6. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403.

    CAS  PubMed  Google Scholar 

  7. Bloniecki V, Aarsland D, Blennow K, Cummings J, Falahati F, Winblad B, Freund-Levi Y. Effects of risperidone and galantamine treatment on Alzheimer’s disease biomarker levels in cerebrospinal fluid. J Alzheimers Dis. 2017;57:387–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boccardi V, Baroni M, Paolacci L, Ercolani S, Longo A, Giordano M, Ruggiero C, Mecocci P. Anticholinergic burden and functional status in older people with cognitive impairment: results from the regal project. J Nutr Health Aging. 2017;21:389–96.

    CAS  PubMed  Google Scholar 

  9. Bonda DJ, Lee H, Camins A, Pallàs M, Casadesus G, Smith MA, Zhu X. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol. 2011;10:275–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Borroni B, Pettenati C, Bordonali T, Akkawi N, Di Luca M, Padovani A. Serum cholesterol levels modulate long-term efficacy of cholinesterase inhibitors in Alzheimer disease. Neurosci Lett. 2003;343:213–5.

    CAS  PubMed  Google Scholar 

  11. Carlsson CM, Xu G, Wen Z, Barnet JH, Blazel HM, Chappell RJ, Stein JH, Asthana S, Sager MA, Alsop DC, Rowley HA, Fain SB, Johnson SC. Effects of atorvastatin on cerebral blood flow in middle-aged adults at risk for Alzheimer’s disease: a pilot study. Curr Alzheimer Res. 2012;9:990–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carter CJ. Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int. 2007;50:12–38.

    CAS  PubMed  Google Scholar 

  13. Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev. 2019;56:100937.

    CAS  PubMed  Google Scholar 

  14. Chen HSV, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem. 2006;97:1611–6.

    CAS  PubMed  Google Scholar 

  15. Chuang E, Hori AM, Hesketh CD, Shorter J. Amyloid assembly and disassembly. J Cell Sci. 2018;131:jcs189928.

    PubMed  PubMed Central  Google Scholar 

  16. Colom-Cadena M, Spires-Jones T, Zetterberg H, Blennow K, Caggiano A, DeKosky ST, Fillit H, Harrison JE, Schneider LS, Scheltens P, de Haan W, Grundman M, van Dyck CH, Izzo NJ, Catalano SM. The clinical promise of biomarkers of synapse damage or loss in Alzheimer’s disease. Alzheimers Res Ther. 2020;12:21.

    PubMed  PubMed Central  Google Scholar 

  17. Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS, Craft S. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-4 allele. Am J Pathol. 2003;162:313–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W, McCurry SM, Bowen JD, Larson EB. Glucose levels and risk of dementia. N Engl J Med. 2013;369:540–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cummings JL, Schneider E, Tariot PN, Graham SM. Behavioral effects of memantine in Alzheimer disease patients receiving donepezil treatment. Neurology. 2006;67:57–63.

    CAS  PubMed  Google Scholar 

  20. Cummings JL, Tong G, Ballard C. Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimers Dis. 2019;67:779–94.

    PubMed  PubMed Central  Google Scholar 

  21. De Oliveira FF, Bertolucci PHF, Chen ES, Smith MAC. Pharmacological modulation of cognitive and behavioral symptoms in patients with dementia due to Alzheimer’s disease. J Neurol Sci. 2014a;336:103–8.

    PubMed  Google Scholar 

  22. De Oliveira FF, Bertolucci PHF, Chen ES, Smith MAC. Risk factors for age at onset of dementia due to Alzheimer’s disease in a sample of patients with low mean schooling from São Paulo, Brazil. Int J Geriatr Psychiatry. 2014b;29:1033–9.

    PubMed  Google Scholar 

  23. De Oliveira FF, Bertolucci PHF, Chen ES, Smith MAC. Assessment of sleep satisfaction in patients with dementia due to Alzheimer’s disease. J Clin Neurosci. 2014c;21:2112–7.

    PubMed  Google Scholar 

  24. De Oliveira FF, Pivi GAK, Chen ES, Smith MAC, Bertolucci PHF. Risk factors for cognitive and functional change in one year in patients with Alzheimer’s disease dementia from São Paulo, Brazil. J Neurol Sci. 2015;359:127–32.

    PubMed  Google Scholar 

  25. De Oliveira FF, Chen ES, Smith MAC, Bertolucci PHF. Associations of blood pressure with functional and cognitive changes in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2016;41:314–23.

    PubMed  Google Scholar 

  26. De Oliveira FF, Chen ES, Smith MAC, Bertolucci PHF. Longitudinal lipid profile variations and clinical change in Alzheimer’s disease dementia. Neurosci Lett. 2017a;646:36–42.

    PubMed  Google Scholar 

  27. De Oliveira FF, Chen ES, Smith MAC, Bertolucci PHF. Associations of cerebrovascular metabolism genotypes with neuropsychiatric symptoms and age at onset of Alzheimer’s disease dementia. Braz J Psychiatry. 2017b;39:95–103.

    PubMed  PubMed Central  Google Scholar 

  28. De Oliveira FF, Chen ES, Smith MAC, Bertolucci PHF. Pharmacogenetics of angiotensin-converting enzyme inhibitors in patients with Alzheimer’s disease dementia. Curr Alzheimer Res. 2018a;15:386–98.

    PubMed  Google Scholar 

  29. De Oliveira FF, Pereira FV, Pivi GAK, Smith MAC, Bertolucci PHF. Effects of APOE haplotypes and measures of cardiovascular risk over gender-dependent cognitive and functional changes in one year in Alzheimer’s disease. Int J Neurosci. 2018b;128:472–6.

    PubMed  Google Scholar 

  30. De Oliveira FF, Almeida SS, Chen ES, Smith MC, Naffah-Mazzacoratti MG, Bertolucci PHF. Lifetime risk factors for functional and cognitive outcomes in patients with Alzheimer’s disease. J Alzheimers Dis. 2018c;65:1283–99.

    PubMed  Google Scholar 

  31. De Oliveira FF, Chen ES, Smith MAC, Bertolucci PHF. Selected LDLR and APOE polymorphisms affect cognitive and functional response to lipophilic statins in Alzheimer’s disease. J Mol Neurosci. 2020;70:1574–88.

    PubMed  Google Scholar 

  32. De Oliveira FF, Miraldo MC, Castro-Neto EF, Almeida SS, Matas SLA, Bertolucci PHF, Naffah-Mazzacoratti MG. Associations of neuropsychiatric features with cerebrospinal fluid biomarkers of amyloidogenesis and neurodegeneration in dementia with lewy bodies compared with Alzheimer’s disease and cognitively healthy people. J Alzheimers Dis. 2021;81(3):1295–309.

    Article  CAS  PubMed  Google Scholar 

  33. Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33:1500–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gielen M, Retchless BS, Mony L, Johnson JW, Paoletti P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459:703–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Glodzik L, Rusinek H, Pirraglia E, McHugh P, Tsui W, Williams S, Cummings M, Li Y, Rich K, Randall C, Mosconi L, Osorio R, Murray J, Zetterberg H, Blennow K, de Leon M. Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly. Neurobiol Aging. 2014;35:64–71.

    CAS  PubMed  Google Scholar 

  36. Goukasian N, Hwang KS, Romero T, Grotts J, Do TM, Groh JR, Bateman DR, Apostolova LG. Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: a multisite observational cohort study. BMJ Open. 2019;9:e031947.

    PubMed  PubMed Central  Google Scholar 

  37. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat Rev Neurol. 2020;16:30–42.

    CAS  PubMed  Google Scholar 

  38. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.

    PubMed  PubMed Central  Google Scholar 

  39. Han JY, Besser LM, Xiong C, Kukull WA, Morris JC. Cholinesterase inhibitors may not benefit mild cognitive impairment and mild Alzheimer disease dementia. Alzheimer Dis Assoc Disord. 2019;33:87–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hemming ML, Selkoe DJ. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005;280:37644–50.

    CAS  PubMed  Google Scholar 

  41. Honjo K, Black SE, Verhoeff NPLG. Alzheimer’s disease, cerebrovascular disease, and the β−amyloid cascade. Can J Neurol Sci. 2012;39:712–28.

    PubMed  Google Scholar 

  42. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jack CR Jr, Wiste HJ, Weigand SD, Rocca WA, Knopman DS, Mielke MM, Lowe VJ, Senjem ML, Gunter JL, Preboske GM, Pankratz VS, Vemuri P, Petersen RC. Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: a cross-sectional study. Lancet Neurol. 2014;13:997–1005.

    PubMed  PubMed Central  Google Scholar 

  44. Jochemsen HM, van der Flier WM, Ashby EL, Teunissen CE, Jones RE, Wattjes MP, Scheltens P, Geerlings MI, Kehoe PG, Muller M. Angiotensin-converting enzyme in cerebrospinal fluid and risk of brain atrophy. J Alzheimers Dis. 2015;44:153–62.

    CAS  PubMed  Google Scholar 

  45. Kandiah N, Chander RJ, Ng A, Wen MC, Cenina AR, Assam PN. Association between white matter hyperintensity and medial temporal atrophy at various stages of Alzheimer’s disease. Eur J Neurol. 2015;22:150–5.

    CAS  PubMed  Google Scholar 

  46. Kehoe PG, Wilcock GK. Is inhibition of the renin-angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol. 2007;6:373–8.

    CAS  PubMed  Google Scholar 

  47. Kehoe PG. The coming of age of the angiotensin hypothesis in Alzheimer’s disease: progress toward disease prevention and treatment? J Alzheimers Dis. 2018;62:1443–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res. 2005;46:949–68.

    CAS  PubMed  Google Scholar 

  49. Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm. 2010;117:949–60.

    CAS  PubMed  Google Scholar 

  50. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, Wolozin B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.

    PubMed  PubMed Central  Google Scholar 

  51. Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer’s disease drug targets. J Intern Med. 2019;286:398–437.

    CAS  PubMed  Google Scholar 

  52. Malito E, Hulse RE, Tang WJ. Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci. 2008;65:2574–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mendoza-Oliva A, Zepeda A, Arias C. The complex actions of statins in brain and their relevance for Alzheimer’s disease treatment: an analytical review. Curr Alzheimer Res. 2014;11:817–33.

    CAS  PubMed  Google Scholar 

  54. Moraes WA, Poyares DR, Guilleminault C, Ramos LR, Bertolucci PHF, Tufik S. The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: a double-blind placebo-controlled study. Sleep. 2006;29:199–205.

    Google Scholar 

  55. Nalivaeva NN, Fisk LR, Belyaev ND, Turner AJ. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res. 2008;5:212–24.

    CAS  PubMed  Google Scholar 

  56. Ohrui T, Tomita N, Sato-Nakagawa T, Matsui T, Maruyama M, Niwa K, Arai H, Sasaki H. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology. 2004;63:1324–5.

    CAS  PubMed  Google Scholar 

  57. Oliveira FF, Machado FC, Sampaio G, Marin SMC, Chen ES, Smith MAC, Bertolucci PHF. Contrasts between patients with Lewy body dementia syndromes and APOE-ε3/ε3 patients with late-onset Alzheimer disease dementia. Neurologist. 2015;20:35–41.

    PubMed  Google Scholar 

  58. Oliveira FF, Chen ES, Smith MAC, Bertolucci PHF. Predictors of cognitive and functional decline in patients with Alzheimer disease dementia from Brazil. Alzheimer Dis Assoc Disord. 2016;30:243–50.

    PubMed  Google Scholar 

  59. Ozudogru SN, Lippa CF. Disease modifying drugs targeting β-amyloid. Am J Alzheimers Dis Other Dement. 2012;27:296–300.

    CAS  Google Scholar 

  60. Petek B, Villa-Lopez M, Loera-Valencia R, Gerenu G, Winblad B, Kramberger MG, Ismail MAM, Eriksdotter M, Garcia-Ptacek S. Connecting the brain cholesterol and renin-angiotensin systems: potential role of statins and RAS-modifying medications in dementia. J Intern Med. 2018;284:620–42.

    CAS  PubMed  Google Scholar 

  61. Pistollato F, Cano SS, Elio I, Vergara MM, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev. 2016;74:624–34.

    PubMed  Google Scholar 

  62. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging. 2006;27:190–8.

    CAS  PubMed  Google Scholar 

  63. Sano M, Bell KL, Galasko D, Galvin JE, Thomas RG, van Dyck CH, Aisen PS. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology. 2011;77:556–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Selkoe DJ. The ups and downs of Aβ. Nat Med. 2006;12:758–9.

    CAS  PubMed  Google Scholar 

  65. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Showraki A, Murari G, Ismail Z, Barfett JJ, Fornazzari L, Munoz DG, Schweizer TA, Fischer CE. Cerebrospinal fluid correlates of neuropsychiatric symptoms in patients with Alzheimer’s disease/mild cognitive impairment: a systematic review. J Alzheimers Dis. 2019;71:477–501.

    CAS  PubMed  Google Scholar 

  67. Silverberg N, Elliott C, Ryan L, Masliah E, Hodes R. NIA commentary on the NIA-AA research framework: towards a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:576–8.

    PubMed  Google Scholar 

  68. Tariot PN, Schneider LS, Cummings J, Thomas RG, Raman R, Jakimovich LJ, Loy R, Bartocci B, Fleisher A, Ismail S, Porsteinsson A, Weiner M, Jack CR Jr, ThalL APS. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch Gen Psychiatry. 2011;68:853–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Roberts RO, Lowe VJ, Kantarci K, Senjem ML, Gunter JL, Boeve BF, Petersen RC, Jack CR Jr. Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Ann Neurol. 2012;72:730–8.

    PubMed  PubMed Central  Google Scholar 

  70. Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron. 2004;44:181–93.

    CAS  PubMed  Google Scholar 

  71. Walsh DM, Selkoe DJ. Amyloid β-protein and beyond: the path forward in Alzheimer’s disease. Curr Opin Neurobiol. 2020;61:116–24.

    CAS  PubMed  Google Scholar 

  72. Wattmo C, Wallin AK, Minthon L. Functional response to cholinesterase inhibitor therapy in a naturalistic Alzheimer’s disease cohort. BMC Neurol. 2012;12:134.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Werner FM, Coveñas R. Serotonergic drugs: agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in Alzheimer’s disease. Curr Pharm Des. 2016;22:2064–71.

    CAS  PubMed  Google Scholar 

  74. Williams PT. Lower risk of Alzheimer’s disease mortality with exercise, statin, and fruit intake. J Alzheimers Dis. 2015;44:1121–9.

    CAS  PubMed  Google Scholar 

  75. Wright JW, Harding JW. The brain RAS and Alzheimer’s disease. Exp Neurol. 2010;223:326–33.

    CAS  PubMed  Google Scholar 

  76. Yamamoto N, Fujii Y, Kasahara R, Tanida M, Ohora K, Ono Y, Suzuki K, Sobue K. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia. 2016;64:952–62.

    PubMed  Google Scholar 

  77. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, F.F. (2022). The Viability of Treatment Conditioned to the Pathophysiology of Alzheimer’s Disease. In: Santos, G.A.A.d. (eds) Pharmacological Treatment of Alzheimer's Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-94383-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94383-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94382-0

  • Online ISBN: 978-3-030-94383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics