Skip to main content
Log in

The C4-dicarboxylate transport system ofRhizobium meliloti and its role in nitrogen fixation during symbiosis with alfalfa (Medicago sativa)

  • Multi-Author Reviews
  • Symbiotic Interactions Between Microorganisms and Plants
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

TheRhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for an effective symbiosis with alfalfa plants. C4-dicarboxylates are the major carbon source taken up by bacteroids. Genetic analysis of Dct mutant strains led to the isolation of thedct carrier genedctA and the regulatory genesdctB anddctD. The carrier genedctA is regulated in free-living cells by the alternative sigma factor RpoN and the two-component regulatory system DctB/D. In addition, DctA is involved in its own regulation, possibly by interacting with DctB. In bacteroids, besides the DctB/DctD system an additional symbiotic activator is thought to be involved indctA expression. Further regulation ofdctA in the free-living state is reflected by diauxic growth of rhizobia, with succinate being the preferred carbon source. The tight coupling of C4-dicarboxylate transport and nitrogen fixation is revealed by a reduced level of C4-dicarboxylate transport in nitrogenase negative bacteroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arwas, R., McKay, I. A., Rowney, F. R. P., Dilworth, M. J., and Glenn, A. R., Properties of organic acid utilization mutants ofRhizobium leguminosarum strain 300. J. gen. Microbiol.131 (1985) 2059–2066.

    Google Scholar 

  2. Arwas, R., Glenn, A. R., and Dilworth, M. J., Properties of double mutants ofRhizobium leguminosarum which are defective in the utilisation of dicarboxylic acids and sugars. J. gen. Microbiol.132 (1986) 2742–2747.

    Google Scholar 

  3. Batista, S., Castro, D., Aguilar, O. M., and Martinez-Drets, G., Induction of C4-dicarboxylate transport genes by external stimuli inRhizobium meliloti. Can. J. Microbiol.38 (1992) 51–55.

    Article  CAS  PubMed  Google Scholar 

  4. Bergersen, F. J., and Turner, G. L., Nitrogen fixation by the bacteroid fraction of breis of soybean nodules. Biochim. biophys. Acta141 (1967) 507–515.

    Article  CAS  PubMed  Google Scholar 

  5. Birkenhead, K., Noonan, B., Reville, W.J., Boesten, B., Manian, S. S., and O'Gara, F., Carbon utilisation and regulation of nitrogen fixation genes inRhizobium meliloti. Molec. Pl.-Microbe Interactions3 (1990) 167–173.

    Article  CAS  Google Scholar 

  6. Bolten, E., Higgisson, B., Harrington, A., and O'Gara, F., Dicarboxylic acid transport inRhizobium meliloti: isolation of mutants and cloning of dicarboxylic acid transport genes. Archs Microbiol.144 (1986) 142–146.

    Article  Google Scholar 

  7. Botsford, J. L., and Harman, J. G., Cyclic AMP in prokaryotes. Microbiol. Rev.56 (1992) 100–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Charles, T. C., and Finan, T. M., Genetic map ofRhizobium meliloti megaplasmid pRmeSU47b. J. Bact.172 (1990) 2469–2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dammann, T., Die Rolle desntrA Gens im Succinattransport vonRhizobium meliloti. Diploma Thesis, Bielefeld 1988.

  10. Dilworth, M. J., McKay, I. A., and Glenn A. R., Dicarboxylate metabolism in rhizobia needs malic enzyme, in: Nitrogen Fixation: Hundred Years After, p. 555. Eds H. Bothe, F. J. de Brujin and W. E. Newton. Gustav Fischer Verlag, Stuttgart 1988.

    Google Scholar 

  11. Driscoll B., and Finan, T. M., NAD+-dependent malic enzyme ofRhizobium meliloti is required for symbiotic nitrogen fixation. Molec. Microbiol.7 (1993) 865–873.

    Article  CAS  Google Scholar 

  12. Dubler, R. E., Toscano W. A. Jr., and Hartline, R. A., Transport of succinate byPseudomonas putida. Archs Biochem. Biophys.160 (1974) 422–429.

    Article  CAS  Google Scholar 

  13. Duncan, M. J., Properties of Tn5-induced carbohydrate mutants inRhizobium meliloti. J. gen. Microbiol.122 (1981) 61–67.

    CAS  Google Scholar 

  14. El-Din, A. K. Y. G., A succinate transport mutant ofBradyrhizobium japonicum forms ineffective nodules on soybeans. Can. J. Microbiol.38 (1992) 230–234.

    Article  CAS  PubMed  Google Scholar 

  15. Engelke, T., Physiologische und genetische Analyse von im Succinattransport defektenRhizobium meliloti 2011 Mutanten. Diploma Thesis, Bielefeld 1985.

  16. Engelke, T., Genetik des C4-Dicarbonsäuretransports beiRhizobium meliloti. Ph.D. Thesis, Bielefeld 1991.

  17. Engelke, T., Jagadish, M. N., and Pühler, A., Biochemical and genetical analysis ofRhizobium meliloti mutants defective in C4-dicarboxylate transport. J. gen. Microbiol.133 (1987) 3019–3029.

    CAS  Google Scholar 

  18. Engelke, T., Dammann, T., Jording, D., Kapp, D., and Pühler, A., C4-dicarboxylate transport inRhizobium meliloti 2011, in: Nitrogen Fixation: Hundred Years After, p. 556. Eds H. Bothe, F. J. de Brujin and W. E. Newton. Gustav Fischer Verlag, Stuttgart 1988.

    Google Scholar 

  19. Engelke, T., Jording, D., Kapp, D., and Pühler, A., Identification and sequence analysis of theRhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J. Bact.171 (1989) 5551–5560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finan, T. M., Wood, J. M., and Jordan, D. C., Succinate transport inRhizobium leguminosarum. J. Bact.148 (1981) 193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finan, T. M., Wood, J. M., and Jordan, D. C., Symbiotic properties of C4-dicarboxylic acid transport mutants ofRhizobium leguminosarum. J. Bact.154 (1983) 1403–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finan, T. M., Oresnik, I., and Bottacin, A., Mutants ofRhizobium meliloti defective in succinate metabolism. J. Bact.170 (1988) 3396–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finan, T. M., McWinnie, E., Driscoll, B., and Watson, R. J., Complex symbiotic phenotypes result from gluconeogenic mutations inRhizobium meliloti. Molec. Pl.-Microbe Interactions4 (1991) 386–392.

    Article  CAS  Google Scholar 

  24. Gardiol, A., Arias, A., Cervenansky, C., and Martinez-Drets, G., Succinate dehydrogenase mutant ofRhizobium meliloti. J. Bact.151 (1982) 1621–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardiol, A. E., Truchet, G. L., and Dazzo, F. B., Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation ofRhizobium meliloti in alfalfa nodules. Appl. envir. Microbiol.53 (1987) 1947–1950.

    Article  CAS  Google Scholar 

  26. Ghei, O. K., and Kay, W. W., Properties of an inducible C4-dicarboxylate transport system inBacillus subtilis. J. Bact.114 (1973) 65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glenn, A. R., Poole, P. S., and Hudman, J. F., Succinate uptake by free-living and bacteroid forms ofRhizobium leguminosarum. J. gen. Microbiol.119 (1980) 267–271.

    CAS  Google Scholar 

  28. Glenn, A. R., and Dilworth, M. J., The uptake and hydrolysis of disaccharides by fast- and slow-growing species ofRhizobium. Archs Microbiol.129 (1981) 233–239.

    Article  CAS  Google Scholar 

  29. Guezza, M., Hornez, J.-P., Courtois, B., and Derieux, J.-C., Study of a fructose negative mutant ofRhizobium meliloti. FEMS Microbiol. Lett.49 (1988) 429–434.

    Article  Google Scholar 

  30. Herrada, G., Puppo, A., and Rigaud, J., Δ-aminolevulinate uptake byRhizobium bacteroids and its limitation by the peribacteroid membrane in legume nodules. Biochem. biophys. Res. Commun.184 (1992) 1324–1330.

    Article  CAS  PubMed  Google Scholar 

  31. Hornez, J. P., Theodoropoulos, A. P., Courtois, B., and Derieux, J. C., Diauxic growth and catabolite repression inRhizobium meliloti, in: Advances in Nitrogen Fixation Research, p. 262. Eds C. Veeger and W. E. Newton. Martinus Nijhoff Publishers, Wageningen 1984.

    Chapter  Google Scholar 

  32. Hornez, J.-P., El Guezzar, M., and Derieux, J.-C., Succinate transport inRhizobium meliloti: characteristics and impact on symbiosis. Curr. Microbiol.19 (1989) 207–212.

    Article  CAS  Google Scholar 

  33. Hornez, J. P., Theodoropoulos, P., and Derieux, J. C., Diauxic growth monitored by the measurement of dissolved oxygen inRhizobium meliloti batch culture. Microbios Lett.44 (1990) 157–160.

    Google Scholar 

  34. Humbeck, C., and Werner, D., Two succinate uptake systems inBradyrhizobium japonicum. Curr. Microbiol.14 (1987) 259–262.

    Article  CAS  Google Scholar 

  35. Jiang, J., Gu, B., Albright, L. M., and Nixon, B. T., Conservation between coding and regulatory elements ofRhizobium meliloti andRhizobium leguminosarum dct genes. J. Bact.171 (1989) 5244–5253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jording, D., Sharma, P. K., Schmidt, R., Engelke, T., Uhde, C., and Pühler, A., Regulatory aspects of the C4-dicarboxylate transport inRhizobium meliloti: transcriptional activation and dependence on effective symbiosis. J. Pl. Physiol.141 (1992) 18–27.

    Article  Google Scholar 

  37. Jording, D., and Pühler, A., The membrane topology of theRhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions withEscherichia coli K12 alkaline phosphatase (PhoA) and β-galactosidase (LacZ). Molec. gen. Genet.241 (1993) 106–144.

    Article  CAS  PubMed  Google Scholar 

  38. Kay, W. W., and Kornberg, H. L., The uptake of C4-dicarboxylic acids byEscherichia coli. Eur. J. Biochem.18 (1971) 274–281.

    Article  CAS  PubMed  Google Scholar 

  39. Kay, W. W., and Cameron, M. J., Transport of C4-dicarboxylic acids inSalmonella typhimurium. Archs Biochem. Biophys.190 (1978) 281–289.

    Article  CAS  Google Scholar 

  40. Kim, J., and Rees, D. C., Nitrogenase and biological nitrogen fixation. Biochemistry33 (1994) 389–397.

    Article  CAS  PubMed  Google Scholar 

  41. Labes, M., and Finan, T. M., Negative regulation ofσ 54-dependentdctA expression by the transcriptional activator DctD. J. Bact.175 (1993) 2674–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Labes, M., Rastogi, V., Watson, R., and Finan, R. M., Symbiotic nitrogen fixation by anifA deletion mutant ofRhizobium meliloti: the role of an unusualntrC allele. J. Bact.175 (1993) 2662–2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ledebur, H., Gu, B., Sojda, J. III, and Nixon, B. T.,Rhizobium meliloti andRhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream ofσ 54-dependentdctA promoters. J. Bact.172 (1990) 3888–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ledebur, H., and Nixon, B. T., Tandem DctD-binding sites of theRhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD. Molec. Microbiol.6 (1992) 3479–3492.

    Article  CAS  Google Scholar 

  45. Lo, T. C. Y., Rayman, M. K., and Sanwas, B. D., Transport of succinate inEscherichia coli. J. biol. Chem.247 (1972) 6323–6331.

    Article  CAS  PubMed  Google Scholar 

  46. Maloney, P. C., A consensus structure for membrane transport. Res. Microbiol.141 (1990) 374–396.

    Article  CAS  PubMed  Google Scholar 

  47. Mandal, N. C., and Chakrabartty, P. K., Succinate-mediated catabolite repression of enzymes of glucose metabolism in root-nodule bacteria. Curr. Microbiol.26 (1993) 247–251.

    Article  Google Scholar 

  48. Manoil, C., and Beckwith, J., TnphoA: a transposon probe for protein export signals. Proc. natl Acad. Sci. USA82 (1985) 8129–8133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Masepohl, B., Witty, J. F, Riedel, K.-U., Klipp, W., and Pühler, A.,Rhizobium meliloti mutants defective in symbiotic nitrogen fixation affect the oxgyen gradient in alfalfa (Medicago sativa) root nodules. J. expl Bot.44 (1993) 419–426.

    Article  Google Scholar 

  50. McAllister, C. F., and Lepo, J. E., Succinate transport by free-living forms ofRhizobium japonicum. J. Bact.153 (1983) 1155–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKay, I. A., Glenn, A. R., and Dilworth, M. J., Gluconeogenesis inRhizobium leguminosarum MNF3841. J. gen. Microbiol.131 (1985) 2067–2073.

    CAS  Google Scholar 

  52. McKay, I. A., Dilworth, M. J., and Glenn, A. R., Dicarboxylate metabolism in free-living and bacteroid forms ofRhizobium leguminosarum MNF3841. J. gen. Microbiol.134 (1988) 1433–1440.

    CAS  Google Scholar 

  53. McRae, D. G., Miller, R. W., Berndt, W. B., and Joy, K., Transport of C4-dicarboxylates and amino acids byRhizobium meliloti bacteroids. Molec. Pl.-Microbe Interactions2 (1989) 273–278.

    Article  Google Scholar 

  54. Miller, R. W., McRae, D. G., Al-Jobore, A., and Berndt, W. B., Respiration supported nitrogenase activity of isolatedRhizobium meliloti bacteroids. J. cell. Biochem.38 (1988) 35–49.

    Article  CAS  PubMed  Google Scholar 

  55. Nixon, B. T., Ronson, C. W., and Ausubel, F. M., Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genesntrB andntrC. Proc. natl Acad. Sci. USA83 (1986) 7850–7854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Brian, M. R., and Maier, R. J., Molecular aspects of the energetics of nitrogen fixation inRhizobium-legume symbioses. Biochem. biophys. Acta974 (1989) 229–246.

    CAS  PubMed  Google Scholar 

  57. O'Regan, M., Kiely, B., and O'Gara, F., Expression of the adenyl cyclase-encoding gene (cya) ofRhizobium meliloti F34: existence of twocya genes? Gene83 (1989) 243–249.

    Article  CAS  PubMed  Google Scholar 

  58. Peoples, M. B., and Craswell, E. T., Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Pl. Soil141 (1992) 13–39.

    Article  CAS  Google Scholar 

  59. Phillips, A. T., and Mulfinger, L. M., Cyclic adenosine 3′,5′-monophosphate levels inPseudomonas putida andPseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J. Bact.145 (1981) 1286–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pühler, A., Engelke, T., Jording, D., Sharma, P. K., Regulation of the C4-dicarboxylate transport in free-living and symbioticRhizobium meliloti, in: Nitrogen Fixation: Achievements and Objectives, pp. 449–450. Eds P. M. Gresshoff, L. E. Roth, G. Stacey and W. E. Newton. Chapman and Hall, New York 1990.

    Chapter  Google Scholar 

  61. Rastogi, V., Labes, M., Finan, T., and Watson, R., Overexpression of thedctA gene inRhizobium meliloti: effect on transport of C4-dicarboxylates and symbiotic nitrogen fixation. Can. J. Microbiol.38 (1992) 555–562.

    Article  CAS  PubMed  Google Scholar 

  62. Reuser, A. J. J., and Postma, P. W., The induction of translocators for di- and tricarboxylic acid anions inAzotobacter vinelandii. Eur. J. Biochem.33 (1973) 584–592.

    Article  CAS  PubMed  Google Scholar 

  63. Ronson, C. W., and Primrose, S. B., Carbohydrate metabolism inRhizobium trifolii: identification and symbiotic properties of mutants. J. gen. Microbiol.112 (1979) 77–88.

    Article  CAS  Google Scholar 

  64. Ronson, C. W., Lyttleton, P., and Robertson, J. G., C4-dicarboxylate transport mutants ofRhizobium trifolii form ineffective nodules onTrifolium repens. Proc. natl Acad. Sci. USA78 (1981) 4284–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ronson, C. W., Astwood, P. M., and Downie, J. A., Molecular cloning and genetic organisation of C4-dicarboxylate transport genes fromRhizobium leguminosarum. J. Bact.160 (1984) 903–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ronson, C. W., and Astwood, P. M., Genes involved in the carbon metabolism of bacteroids, in: Nitrogen Fixation Research Progress, pp. 201–207. Eds H. J. Evans, P. Bottomley and W. E. Newton. Martinus Nijhoff Publishers, Dordrecht 1985.

    Chapter  Google Scholar 

  67. Ronson, C. W., Astwood, P. M., Nixon, B. T., and Ausubel, F. M., Deduced products of C4-dicarboxylate transport regulatory genes ofRhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucl. Acids Res.15 (1987) 7921–7934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ronson, C. W., Nixon, B. T., Albright, L. M., and Ausubel, F. M.,Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J. Bact.169 (1987) 2424–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. San Francisco, M. J. D., and Jacobson, G. R., Uptake of succinate and malate in cultured cells and bacteroids of two slow-growing species ofRhizobium. J. gen. Microbiol.131 (1985) 765–773.

    CAS  Google Scholar 

  70. Schmidt, R., Untersuchungen zum C4-Dicarbonsäuretransport des LaborstammsRhizobium meliloti Rm2011 und verschiedenerR. meliloti Wildisolate. Diploma Thesis, Bielefeld 1992.

  71. Silhavy, T. J., and Beckwith, J. R., Use oflac fusions for the study of biological problems. Microbiol. Rev.49 (1985) 398–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Slooten, J. C. van, Bhuvanasvari, T. V., Bardin, S., Stanley, J., Two C4-dicarboxylate transport systems inRhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. Molec. Pl.-Microbe Interactions5 (1992) 179–186.

    Article  Google Scholar 

  73. Stowers, M. D., Carbon metabolism inRhizobium species. A. Rev. Microbiol.39 (1985) 89–108.

    Article  CAS  Google Scholar 

  74. Ucker, D. S., and Signer, E. R., Catabolite-repression-like phenomenon inRhizobium meliloti. J. Bact.136 (1978) 1197–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Uhde, C., Genetische und physiologische Untersuchungen zum C4-Dicarbonsäuretransportsystem vonRhizobium meliloti. Diploma Thesis, Bielefeld 1993.

  76. Vance C. P., and Heichel, G. H., Carbon in N2-fixation: limitation or exquisite adaptation. A. Rev. Pl. Physiol. Pl. molec. Biol.42 (1991) 373–392.

    Article  CAS  Google Scholar 

  77. Vries, G. E. de, Brussel, A. A. N. van, and Quispel, A., Mechanism and regulation of glucose transport inRhizobium leguminosarum. J. Bact.149 (1982) 872–879.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang, Y.-P., Birkenhead, K., Boesten, B., Manian, S., and O'Gara, F., Genetic analysis and regulation of theRhizobium meliloti genes controlling C4-dicarboxylic acid transport. Gene85 (1989) 135–144.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Y.-P., Giblin, L., Boesten, B., and O'Gara, F., TheEscherichia coli cAMP receptor protein (CRP) represses theRhizobium meliloti dctA promoter in a cAMP-dependent fashion. Molec. Microbiol.8 (1993) 253–259.

    Article  CAS  Google Scholar 

  80. Watson, R. J., Analysis of the C4-dicarboxylate transport genes ofRhizobium meliloti: nucleotide sequence and deduced products ofdctA, dctB, anddctD. Molec. Pl.-Microbe Interactions3 (1990) 174–181.

    Article  CAS  Google Scholar 

  81. Watson, R. J., Chan, Y.-K., Wheatcroft, R., Yang, A.-F., and Han, S.,Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J. Bact.170 (1988) 927–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Watson, R., Rastogi, V. K., and Chan, Y.-K., Aspartate transport inRhizobium meliloti. J. gen. Microbiol.139 (1993) 1315–1323.

    Article  CAS  Google Scholar 

  83. Wolff, J. A., MacGregor, D. H., Eisenberg, R. C., and Phibbs, P. V. Jr., Isolation and characterization of catabolite repression control mutants ofPseudomonas aeruginosa PAO. J. Bact.173 (1991) 4700–4706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yarosh, O. K., Charles, T. C., and Finan, T. M., Analysis of C4-dicarboxylate transport genes inRhizobium meliloti. Molec. Microbiol.3 (1989) 813–823.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jording, D., Uhde, C., Schmidt, R. et al. The C4-dicarboxylate transport system ofRhizobium meliloti and its role in nitrogen fixation during symbiosis with alfalfa (Medicago sativa). Experientia 50, 874–883 (1994). https://doi.org/10.1007/BF01923473

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923473

Key words

Navigation