, Volume 50, Issue 10, pp 874–883 | Cite as

The C4-dicarboxylate transport system ofRhizobium meliloti and its role in nitrogen fixation during symbiosis with alfalfa (Medicago sativa)

  • D. Jording
  • C. Uhde
  • R. Schmidt
  • A. Pühler
Multi-Author Reviews Symbiotic Interactions Between Microorganisms and Plants


TheRhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for an effective symbiosis with alfalfa plants. C4-dicarboxylates are the major carbon source taken up by bacteroids. Genetic analysis of Dct mutant strains led to the isolation of thedct carrier genedctA and the regulatory genesdctB anddctD. The carrier genedctA is regulated in free-living cells by the alternative sigma factor RpoN and the two-component regulatory system DctB/D. In addition, DctA is involved in its own regulation, possibly by interacting with DctB. In bacteroids, besides the DctB/DctD system an additional symbiotic activator is thought to be involved indctA expression. Further regulation ofdctA in the free-living state is reflected by diauxic growth of rhizobia, with succinate being the preferred carbon source. The tight coupling of C4-dicarboxylate transport and nitrogen fixation is revealed by a reduced level of C4-dicarboxylate transport in nitrogenase negative bacteroids.

Key words

C4-dicarboxylate transport dct genes energy source regulation Rhizobium meliloti symbiosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arwas, R., McKay, I. A., Rowney, F. R. P., Dilworth, M. J., and Glenn, A. R., Properties of organic acid utilization mutants ofRhizobium leguminosarum strain 300. J. gen. Microbiol.131 (1985) 2059–2066.Google Scholar
  2. 2.
    Arwas, R., Glenn, A. R., and Dilworth, M. J., Properties of double mutants ofRhizobium leguminosarum which are defective in the utilisation of dicarboxylic acids and sugars. J. gen. Microbiol.132 (1986) 2742–2747.Google Scholar
  3. 3.
    Batista, S., Castro, D., Aguilar, O. M., and Martinez-Drets, G., Induction of C4-dicarboxylate transport genes by external stimuli inRhizobium meliloti. Can. J. Microbiol.38 (1992) 51–55.PubMedGoogle Scholar
  4. 4.
    Bergersen, F. J., and Turner, G. L., Nitrogen fixation by the bacteroid fraction of breis of soybean nodules. Biochim. biophys. Acta141 (1967) 507–515.PubMedGoogle Scholar
  5. 5.
    Birkenhead, K., Noonan, B., Reville, W.J., Boesten, B., Manian, S. S., and O'Gara, F., Carbon utilisation and regulation of nitrogen fixation genes inRhizobium meliloti. Molec. Pl.-Microbe Interactions3 (1990) 167–173.Google Scholar
  6. 6.
    Bolten, E., Higgisson, B., Harrington, A., and O'Gara, F., Dicarboxylic acid transport inRhizobium meliloti: isolation of mutants and cloning of dicarboxylic acid transport genes. Archs Microbiol.144 (1986) 142–146.CrossRefGoogle Scholar
  7. 7.
    Botsford, J. L., and Harman, J. G., Cyclic AMP in prokaryotes. Microbiol. Rev.56 (1992) 100–122.PubMedGoogle Scholar
  8. 8.
    Charles, T. C., and Finan, T. M., Genetic map ofRhizobium meliloti megaplasmid pRmeSU47b. J. Bact.172 (1990) 2469–2476.PubMedGoogle Scholar
  9. 9.
    Dammann, T., Die Rolle desntrA Gens im Succinattransport vonRhizobium meliloti. Diploma Thesis, Bielefeld 1988.Google Scholar
  10. 10.
    Dilworth, M. J., McKay, I. A., and Glenn A. R., Dicarboxylate metabolism in rhizobia needs malic enzyme, in: Nitrogen Fixation: Hundred Years After, p. 555. Eds H. Bothe, F. J. de Brujin and W. E. Newton. Gustav Fischer Verlag, Stuttgart 1988.Google Scholar
  11. 11.
    Driscoll B., and Finan, T. M., NAD+-dependent malic enzyme ofRhizobium meliloti is required for symbiotic nitrogen fixation. Molec. Microbiol.7 (1993) 865–873.Google Scholar
  12. 12.
    Dubler, R. E., Toscano W. A. Jr., and Hartline, R. A., Transport of succinate byPseudomonas putida. Archs Biochem. Biophys.160 (1974) 422–429.CrossRefGoogle Scholar
  13. 13.
    Duncan, M. J., Properties of Tn5-induced carbohydrate mutants inRhizobium meliloti. J. gen. Microbiol.122 (1981) 61–67.Google Scholar
  14. 14.
    El-Din, A. K. Y. G., A succinate transport mutant ofBradyrhizobium japonicum forms ineffective nodules on soybeans. Can. J. Microbiol.38 (1992) 230–234.PubMedGoogle Scholar
  15. 15.
    Engelke, T., Physiologische und genetische Analyse von im Succinattransport defektenRhizobium meliloti 2011 Mutanten. Diploma Thesis, Bielefeld 1985.Google Scholar
  16. 16.
    Engelke, T., Genetik des C4-Dicarbonsäuretransports beiRhizobium meliloti. Ph.D. Thesis, Bielefeld 1991.Google Scholar
  17. 17.
    Engelke, T., Jagadish, M. N., and Pühler, A., Biochemical and genetical analysis ofRhizobium meliloti mutants defective in C4-dicarboxylate transport. J. gen. Microbiol.133 (1987) 3019–3029.Google Scholar
  18. 18.
    Engelke, T., Dammann, T., Jording, D., Kapp, D., and Pühler, A., C4-dicarboxylate transport inRhizobium meliloti 2011, in: Nitrogen Fixation: Hundred Years After, p. 556. Eds H. Bothe, F. J. de Brujin and W. E. Newton. Gustav Fischer Verlag, Stuttgart 1988.Google Scholar
  19. 19.
    Engelke, T., Jording, D., Kapp, D., and Pühler, A., Identification and sequence analysis of theRhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J. Bact.171 (1989) 5551–5560.PubMedGoogle Scholar
  20. 20.
    Finan, T. M., Wood, J. M., and Jordan, D. C., Succinate transport inRhizobium leguminosarum. J. Bact.148 (1981) 193–202.PubMedGoogle Scholar
  21. 21.
    Finan, T. M., Wood, J. M., and Jordan, D. C., Symbiotic properties of C4-dicarboxylic acid transport mutants ofRhizobium leguminosarum. J. Bact.154 (1983) 1403–1413.PubMedGoogle Scholar
  22. 22.
    Finan, T. M., Oresnik, I., and Bottacin, A., Mutants ofRhizobium meliloti defective in succinate metabolism. J. Bact.170 (1988) 3396–3403.PubMedGoogle Scholar
  23. 23.
    Finan, T. M., McWinnie, E., Driscoll, B., and Watson, R. J., Complex symbiotic phenotypes result from gluconeogenic mutations inRhizobium meliloti. Molec. Pl.-Microbe Interactions4 (1991) 386–392.Google Scholar
  24. 24.
    Gardiol, A., Arias, A., Cervenansky, C., and Martinez-Drets, G., Succinate dehydrogenase mutant ofRhizobium meliloti. J. Bact.151 (1982) 1621–1623.PubMedGoogle Scholar
  25. 25.
    Gardiol, A. E., Truchet, G. L., and Dazzo, F. B., Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation ofRhizobium meliloti in alfalfa nodules. Appl. envir. Microbiol.53 (1987) 1947–1950.Google Scholar
  26. 26.
    Ghei, O. K., and Kay, W. W., Properties of an inducible C4-dicarboxylate transport system inBacillus subtilis. J. Bact.114 (1973) 65–79.PubMedGoogle Scholar
  27. 27.
    Glenn, A. R., Poole, P. S., and Hudman, J. F., Succinate uptake by free-living and bacteroid forms ofRhizobium leguminosarum. J. gen. Microbiol.119 (1980) 267–271.Google Scholar
  28. 28.
    Glenn, A. R., and Dilworth, M. J., The uptake and hydrolysis of disaccharides by fast- and slow-growing species ofRhizobium. Archs Microbiol.129 (1981) 233–239.Google Scholar
  29. 29.
    Guezza, M., Hornez, J.-P., Courtois, B., and Derieux, J.-C., Study of a fructose negative mutant ofRhizobium meliloti. FEMS Microbiol. Lett.49 (1988) 429–434.CrossRefGoogle Scholar
  30. 30.
    Herrada, G., Puppo, A., and Rigaud, J., Δ-aminolevulinate uptake byRhizobium bacteroids and its limitation by the peribacteroid membrane in legume nodules. Biochem. biophys. Res. Commun.184 (1992) 1324–1330.CrossRefPubMedGoogle Scholar
  31. 31.
    Hornez, J. P., Theodoropoulos, A. P., Courtois, B., and Derieux, J. C., Diauxic growth and catabolite repression inRhizobium meliloti, in: Advances in Nitrogen Fixation Research, p. 262. Eds C. Veeger and W. E. Newton. Martinus Nijhoff Publishers, Wageningen 1984.Google Scholar
  32. 32.
    Hornez, J.-P., El Guezzar, M., and Derieux, J.-C., Succinate transport inRhizobium meliloti: characteristics and impact on symbiosis. Curr. Microbiol.19 (1989) 207–212.CrossRefGoogle Scholar
  33. 33.
    Hornez, J. P., Theodoropoulos, P., and Derieux, J. C., Diauxic growth monitored by the measurement of dissolved oxygen inRhizobium meliloti batch culture. Microbios Lett.44 (1990) 157–160.Google Scholar
  34. 34.
    Humbeck, C., and Werner, D., Two succinate uptake systems inBradyrhizobium japonicum. Curr. Microbiol.14 (1987) 259–262.CrossRefGoogle Scholar
  35. 35.
    Jiang, J., Gu, B., Albright, L. M., and Nixon, B. T., Conservation between coding and regulatory elements ofRhizobium meliloti andRhizobium leguminosarum dct genes. J. Bact.171 (1989) 5244–5253.PubMedGoogle Scholar
  36. 36.
    Jording, D., Sharma, P. K., Schmidt, R., Engelke, T., Uhde, C., and Pühler, A., Regulatory aspects of the C4-dicarboxylate transport inRhizobium meliloti: transcriptional activation and dependence on effective symbiosis. J. Pl. Physiol.141 (1992) 18–27.Google Scholar
  37. 37.
    Jording, D., and Pühler, A., The membrane topology of theRhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions withEscherichia coli K12 alkaline phosphatase (PhoA) and β-galactosidase (LacZ). Molec. gen. Genet.241 (1993) 106–144.CrossRefPubMedGoogle Scholar
  38. 38.
    Kay, W. W., and Kornberg, H. L., The uptake of C4-dicarboxylic acids byEscherichia coli. Eur. J. Biochem.18 (1971) 274–281.CrossRefPubMedGoogle Scholar
  39. 39.
    Kay, W. W., and Cameron, M. J., Transport of C4-dicarboxylic acids inSalmonella typhimurium. Archs Biochem. Biophys.190 (1978) 281–289.CrossRefGoogle Scholar
  40. 40.
    Kim, J., and Rees, D. C., Nitrogenase and biological nitrogen fixation. Biochemistry33 (1994) 389–397.CrossRefPubMedGoogle Scholar
  41. 41.
    Labes, M., and Finan, T. M., Negative regulation ofσ 54-dependentdctA expression by the transcriptional activator DctD. J. Bact.175 (1993) 2674–2681.PubMedGoogle Scholar
  42. 42.
    Labes, M., Rastogi, V., Watson, R., and Finan, R. M., Symbiotic nitrogen fixation by anifA deletion mutant ofRhizobium meliloti: the role of an unusualntrC allele. J. Bact.175 (1993) 2662–2673.PubMedGoogle Scholar
  43. 43.
    Ledebur, H., Gu, B., Sojda, J. III, and Nixon, B. T.,Rhizobium meliloti andRhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream ofσ 54-dependentdctA promoters. J. Bact.172 (1990) 3888–3897.PubMedGoogle Scholar
  44. 44.
    Ledebur, H., and Nixon, B. T., Tandem DctD-binding sites of theRhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD. Molec. Microbiol.6 (1992) 3479–3492.Google Scholar
  45. 45.
    Lo, T. C. Y., Rayman, M. K., and Sanwas, B. D., Transport of succinate inEscherichia coli. J. biol. Chem.247 (1972) 6323–6331.PubMedGoogle Scholar
  46. 46.
    Maloney, P. C., A consensus structure for membrane transport. Res. Microbiol.141 (1990) 374–396.CrossRefPubMedGoogle Scholar
  47. 47.
    Mandal, N. C., and Chakrabartty, P. K., Succinate-mediated catabolite repression of enzymes of glucose metabolism in root-nodule bacteria. Curr. Microbiol.26 (1993) 247–251.CrossRefGoogle Scholar
  48. 48.
    Manoil, C., and Beckwith, J., TnphoA: a transposon probe for protein export signals. Proc. natl Acad. Sci. USA82 (1985) 8129–8133.PubMedGoogle Scholar
  49. 49.
    Masepohl, B., Witty, J. F, Riedel, K.-U., Klipp, W., and Pühler, A.,Rhizobium meliloti mutants defective in symbiotic nitrogen fixation affect the oxgyen gradient in alfalfa (Medicago sativa) root nodules. J. expl Bot.44 (1993) 419–426.Google Scholar
  50. 50.
    McAllister, C. F., and Lepo, J. E., Succinate transport by free-living forms ofRhizobium japonicum. J. Bact.153 (1983) 1155–1162.PubMedGoogle Scholar
  51. 51.
    McKay, I. A., Glenn, A. R., and Dilworth, M. J., Gluconeogenesis inRhizobium leguminosarum MNF3841. J. gen. Microbiol.131 (1985) 2067–2073.Google Scholar
  52. 52.
    McKay, I. A., Dilworth, M. J., and Glenn, A. R., Dicarboxylate metabolism in free-living and bacteroid forms ofRhizobium leguminosarum MNF3841. J. gen. Microbiol.134 (1988) 1433–1440.Google Scholar
  53. 53.
    McRae, D. G., Miller, R. W., Berndt, W. B., and Joy, K., Transport of C4-dicarboxylates and amino acids byRhizobium meliloti bacteroids. Molec. Pl.-Microbe Interactions2 (1989) 273–278.Google Scholar
  54. 54.
    Miller, R. W., McRae, D. G., Al-Jobore, A., and Berndt, W. B., Respiration supported nitrogenase activity of isolatedRhizobium meliloti bacteroids. J. cell. Biochem.38 (1988) 35–49.CrossRefPubMedGoogle Scholar
  55. 55.
    Nixon, B. T., Ronson, C. W., and Ausubel, F. M., Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genesntrB andntrC. Proc. natl Acad. Sci. USA83 (1986) 7850–7854.PubMedGoogle Scholar
  56. 56.
    O'Brian, M. R., and Maier, R. J., Molecular aspects of the energetics of nitrogen fixation inRhizobium-legume symbioses. Biochem. biophys. Acta974 (1989) 229–246.PubMedGoogle Scholar
  57. 57.
    O'Regan, M., Kiely, B., and O'Gara, F., Expression of the adenyl cyclase-encoding gene (cya) ofRhizobium meliloti F34: existence of twocya genes? Gene83 (1989) 243–249.CrossRefPubMedGoogle Scholar
  58. 58.
    Peoples, M. B., and Craswell, E. T., Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Pl. Soil141 (1992) 13–39.CrossRefGoogle Scholar
  59. 59.
    Phillips, A. T., and Mulfinger, L. M., Cyclic adenosine 3′,5′-monophosphate levels inPseudomonas putida andPseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J. Bact.145 (1981) 1286–1292.PubMedGoogle Scholar
  60. 60.
    Pühler, A., Engelke, T., Jording, D., Sharma, P. K., Regulation of the C4-dicarboxylate transport in free-living and symbioticRhizobium meliloti, in: Nitrogen Fixation: Achievements and Objectives, pp. 449–450. Eds P. M. Gresshoff, L. E. Roth, G. Stacey and W. E. Newton. Chapman and Hall, New York 1990.Google Scholar
  61. 61.
    Rastogi, V., Labes, M., Finan, T., and Watson, R., Overexpression of thedctA gene inRhizobium meliloti: effect on transport of C4-dicarboxylates and symbiotic nitrogen fixation. Can. J. Microbiol.38 (1992) 555–562.PubMedGoogle Scholar
  62. 62.
    Reuser, A. J. J., and Postma, P. W., The induction of translocators for di- and tricarboxylic acid anions inAzotobacter vinelandii. Eur. J. Biochem.33 (1973) 584–592.CrossRefPubMedGoogle Scholar
  63. 62a.
    Ronson, C. W., and Primrose, S. B., Carbohydrate metabolism inRhizobium trifolii: identification and symbiotic properties of mutants. J. gen. Microbiol.112 (1979) 77–88.Google Scholar
  64. 63.
    Ronson, C. W., Lyttleton, P., and Robertson, J. G., C4-dicarboxylate transport mutants ofRhizobium trifolii form ineffective nodules onTrifolium repens. Proc. natl Acad. Sci. USA78 (1981) 4284–4288.Google Scholar
  65. 64.
    Ronson, C. W., Astwood, P. M., and Downie, J. A., Molecular cloning and genetic organisation of C4-dicarboxylate transport genes fromRhizobium leguminosarum. J. Bact.160 (1984) 903–909.PubMedGoogle Scholar
  66. 65.
    Ronson, C. W., and Astwood, P. M., Genes involved in the carbon metabolism of bacteroids, in: Nitrogen Fixation Research Progress, pp. 201–207. Eds H. J. Evans, P. Bottomley and W. E. Newton. Martinus Nijhoff Publishers, Dordrecht 1985.Google Scholar
  67. 66.
    Ronson, C. W., Astwood, P. M., Nixon, B. T., and Ausubel, F. M., Deduced products of C4-dicarboxylate transport regulatory genes ofRhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucl. Acids Res.15 (1987) 7921–7934.PubMedGoogle Scholar
  68. 67.
    Ronson, C. W., Nixon, B. T., Albright, L. M., and Ausubel, F. M.,Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J. Bact.169 (1987) 2424–2431.PubMedGoogle Scholar
  69. 68.
    San Francisco, M. J. D., and Jacobson, G. R., Uptake of succinate and malate in cultured cells and bacteroids of two slow-growing species ofRhizobium. J. gen. Microbiol.131 (1985) 765–773.Google Scholar
  70. 69.
    Schmidt, R., Untersuchungen zum C4-Dicarbonsäuretransport des LaborstammsRhizobium meliloti Rm2011 und verschiedenerR. meliloti Wildisolate. Diploma Thesis, Bielefeld 1992.Google Scholar
  71. 70.
    Silhavy, T. J., and Beckwith, J. R., Use oflac fusions for the study of biological problems. Microbiol. Rev.49 (1985) 398–418.PubMedGoogle Scholar
  72. 71.
    Slooten, J. C. van, Bhuvanasvari, T. V., Bardin, S., Stanley, J., Two C4-dicarboxylate transport systems inRhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. Molec. Pl.-Microbe Interactions5 (1992) 179–186.Google Scholar
  73. 72.
    Stowers, M. D., Carbon metabolism inRhizobium species. A. Rev. Microbiol.39 (1985) 89–108.CrossRefGoogle Scholar
  74. 73.
    Ucker, D. S., and Signer, E. R., Catabolite-repression-like phenomenon inRhizobium meliloti. J. Bact.136 (1978) 1197–1200.PubMedGoogle Scholar
  75. 74.
    Uhde, C., Genetische und physiologische Untersuchungen zum C4-Dicarbonsäuretransportsystem vonRhizobium meliloti. Diploma Thesis, Bielefeld 1993.Google Scholar
  76. 75.
    Vance C. P., and Heichel, G. H., Carbon in N2-fixation: limitation or exquisite adaptation. A. Rev. Pl. Physiol. Pl. molec. Biol.42 (1991) 373–392.CrossRefGoogle Scholar
  77. 76.
    Vries, G. E. de, Brussel, A. A. N. van, and Quispel, A., Mechanism and regulation of glucose transport inRhizobium leguminosarum. J. Bact.149 (1982) 872–879.PubMedGoogle Scholar
  78. 77.
    Wang, Y.-P., Birkenhead, K., Boesten, B., Manian, S., and O'Gara, F., Genetic analysis and regulation of theRhizobium meliloti genes controlling C4-dicarboxylic acid transport. Gene85 (1989) 135–144.CrossRefPubMedGoogle Scholar
  79. 78.
    Wang, Y.-P., Giblin, L., Boesten, B., and O'Gara, F., TheEscherichia coli cAMP receptor protein (CRP) represses theRhizobium meliloti dctA promoter in a cAMP-dependent fashion. Molec. Microbiol.8 (1993) 253–259.Google Scholar
  80. 79.
    Watson, R. J., Analysis of the C4-dicarboxylate transport genes ofRhizobium meliloti: nucleotide sequence and deduced products ofdctA, dctB, anddctD. Molec. Pl.-Microbe Interactions3 (1990) 174–181.Google Scholar
  81. 80.
    Watson, R. J., Chan, Y.-K., Wheatcroft, R., Yang, A.-F., and Han, S.,Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J. Bact.170 (1988) 927–934.PubMedGoogle Scholar
  82. 81.
    Watson, R., Rastogi, V. K., and Chan, Y.-K., Aspartate transport inRhizobium meliloti. J. gen. Microbiol.139 (1993) 1315–1323.Google Scholar
  83. 82.
    Wolff, J. A., MacGregor, D. H., Eisenberg, R. C., and Phibbs, P. V. Jr., Isolation and characterization of catabolite repression control mutants ofPseudomonas aeruginosa PAO. J. Bact.173 (1991) 4700–4706.PubMedGoogle Scholar
  84. 83.
    Yarosh, O. K., Charles, T. C., and Finan, T. M., Analysis of C4-dicarboxylate transport genes inRhizobium meliloti. Molec. Microbiol.3 (1989) 813–823.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • D. Jording
    • 1
  • C. Uhde
    • 1
  • R. Schmidt
    • 1
  • A. Pühler
    • 1
  1. 1.Lehrstuhl für Genetik, Fakultät für BiologieUniversität BielefeldBielefeldGermany

Personalised recommendations