, Volume 50, Issue 11–12, pp 979–986 | Cite as

Heat shock proteins: the hsp70 family

  • U. Feige
  • B. S. Polla
Multi-Author Reviews

Key words

Heat shock protein hsp70 chaperone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abravaya, K., Myers, M. P., Murphy, S. P., and Morimoto, R. I., The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev.6 (1992) 1153–1164.PubMedGoogle Scholar
  2. 2.
    Agard, D. A., To fold or not to fold ... Science260 (1993) 1903–1904.PubMedGoogle Scholar
  3. 3.
    Arnold, B., Schönrich, G., and Hämmerling, G. J., Multiple levels of peripheral tolerance. Immun. Today14 (1993) 12–14.PubMedGoogle Scholar
  4. 4.
    Barrios, C., Lussow, A. R., Van Embden, J., Van der Zee, R., Rappuoli, R., Costantino, P., Louis, J. A., Lambert, P.-H., and Del Giudice, G., Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-KDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guerin priming. Eur. J. Immun.22 (1992) 1365–1372.Google Scholar
  5. 5.
    Becker, J., and Craig, E. A., Heat-shock proteins as molecular chaperones. Eur. J. Biochem.219 (1994) 11–23.PubMedGoogle Scholar
  6. 6.
    Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennet, W. S., Strominger, J. L., and Wiley, D. C., Structure of the human class I histocompatibility antigen, HLA-A2. Nature329 (1987) 506–512.PubMedGoogle Scholar
  7. 7.
    Blond-Elguindi, S., Cwirla, S. E., Dower, W. J., Lipshutz, R. J., Sprang, S. R., Sambrook, J. R., and Gething, M.-J., Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell75 (1993) 717–728.PubMedGoogle Scholar
  8. 8.
    Brown, C. R., Martin, R. L., Hansen, W. J., Beckmann, R. P., and Welch, W. J., The constitutive and stress inducible forms of hsp70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J. Cell Biol.120 (1993) 1101–1112.PubMedGoogle Scholar
  9. 9.
    Buus, S., Sette, A., Colon, S. M., Janis, D. M., and Grey, H. M., Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell47 (1986) 1071–1077.PubMedGoogle Scholar
  10. 10.
    Cascino, I., Sorrentino, R., and Tosi, R., Strong genetic association between HLA-DR3 and a polymorphic variation in the regulatory region of the HSP70-1 gene. Immunogenetics37 (1993) 177–188.PubMedGoogle Scholar
  11. 11.
    Cohen, I. R., Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. A. Rev. Immun.9 (1991) 567–589.Google Scholar
  12. 12.
    Craig, E. A., Chaperones: Helpers along pathways to protein folding. Science260 (1993) 1902–1903.PubMedGoogle Scholar
  13. 13.
    Cristau, B., Schafer, P. H., and Pierce, S. K., Heat shock enhances antigen processing and accelerates the formation of compact class II αβ dimers. J. Immun.152 (1994) 1546–1556.PubMedGoogle Scholar
  14. 14.
    Daibata, M., Xu, M., Humphreys, R. E., and Reyes, V. E., More efficient peptide binding to MHC class II molecules during cathepsin B digestion of Ii than after Ii release. Molec. Immun.31 (1994) 255–260.PubMedGoogle Scholar
  15. 15.
    Del Giudice, G., Hsp70: A carrier molecule with built-in adjuvanticity. Experientia50 (1994) 1061–1066.PubMedGoogle Scholar
  16. 16.
    DeNagel, D. C., and Pierce, S. K., A case for chaperones in antigen processing. Immun. Today13 (1992) 86–89.PubMedGoogle Scholar
  17. 17.
    Domanico, S. Z., DeNagel, D. C., Dahlseid, J. N., Green, J. F., and Pierce, S. K., Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Molec. cell. Biol.13 (1993) 3598–3610.PubMedGoogle Scholar
  18. 18.
    Elias, D., and Cohen, I. R., Peptide therapy for diabetes in NOD mice. Lancet343 (1994) 704–706.PubMedGoogle Scholar
  19. 19.
    Feige, U., and Cohen, I. R., The 65 kDa heat shock protein (hsp65) in the pathogenesis, prevention and therapy of autoimmune arthritis and diabetes mellitus in rats and mice. Springer Semin. Immunopath.13 (1991) 99–113.Google Scholar
  20. 20.
    Feige, U., and Gasser, J., Therapeutic intervention with mycobacterial heat shock protein peptide 180–188 in adjuvant arthritis in Lewis rats. Mediat. Inflammat.3 (1994) 304.Google Scholar
  21. 21.
    Flaherty, K. M., DeLuca-Flaherty, C., and McKay, D. B., Three-dimensioinal structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature346 (1990) 623–628.PubMedGoogle Scholar
  22. 22.
    Flaherty, K. M., McKay, D. B., Kabsch, W., and Holmes, K. C., Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. natl. Acad. Sci. USA88 (1991) 5041–5045.PubMedGoogle Scholar
  23. 23.
    Flajnik, M. F., Canel, C., Kramer, J., and Kasahara, M., Which came first, MHC class I or class II? Immunogenetics33 (1991) 295–300.Google Scholar
  24. 24.
    Flynn, G. C., Pohl, J., Flocco, M. T., and Rothman, J. E., Peptide-binding specificity of the molecular chaperone BiP. Nature353 (1991) 726–730.PubMedGoogle Scholar
  25. 25.
    Fruman, D. A., Burakoff, S. J., and Bierer, B. E., Immunophilins in protein folding and immunosuppression. FASEB J.8 (1994) 391–400.PubMedGoogle Scholar
  26. 26.
    Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, U., Folding of nascent polypeptide chains in high molecular mass assembly with molecular chaperones. Nature370 (1994) 111–117.PubMedGoogle Scholar
  27. 27.
    Galat, A., Peptidylprolinecis-trans-isomerases: immunophilins. Eur. J. Biochem.216 (1993) 689–707.PubMedGoogle Scholar
  28. 28.
    Gaston, J. S. H., Are heat shock proteins involved in autommunity? Int. J. clin. lab. Res.22 (1992) 90–94.PubMedGoogle Scholar
  29. 29.
    Gething, M.-J., and Sambrook, J., Protein folding in the cell. Nature355 (1992) 33–45.PubMedGoogle Scholar
  30. 30.
    Günther, E. and Walter, L., Genetic aspects of the hsp70 multigene family in vertebrates. Experientia50 (1994) 987–1001.PubMedGoogle Scholar
  31. 31.
    Haas, I. G., BiP (GRP78), an essential hsp70 resident protein in the endoplasmatic reticulum. Experientia50 (1994) 1012–1020.PubMedGoogle Scholar
  32. 32.
    Hall, T. J., Role of hsp70 in cytokine secretion. Experientia50 (1994) 1048–1053.PubMedGoogle Scholar
  33. 33.
    Hannavy, K., Rospert, S., and Schatz, G., Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes. Curr. Opinion Cell Biol.5 (1993) 694–700.PubMedGoogle Scholar
  34. 34.
    Heydari, A. R., Takahashi, R., Gutsmann, A., You, S., and Richardson, A., Hsp70 and aging Experientia50 (1994) 1092–1098.PubMedGoogle Scholar
  35. 35.
    Jäättelä, M., Saskela, K. and Saskela, K., Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factor α and β. Eur. J. Immun.19 (1989) 1413–1417.Google Scholar
  36. 36.
    Jacquier-Sarlin, M. R., Fuller, K., Dinh-Xuan, A. T., Richard, M.-J., and Polla, B. S., Protective effects of hsp70 in inflammation. Experientia50 (1994) 1031–1038.PubMedGoogle Scholar
  37. 37.
    Jones, D. B., Coulson, A. F. W., and Duff, G. W., Sequence homologies between hsp60 and autoantigens. Immun. Today14 (1993) 115–118.PubMedGoogle Scholar
  38. 38.
    Kantengwa, S., and Polla, B. S., Phagocytosis ofStaphylococcus aureus induces a selective stress response in human monocytes-macrophages (Mϕ): Modulation by Mϕ differentiation and by iron. Infect. Immun.61 (1993) 1281–1287.PubMedGoogle Scholar
  39. 39.
    Kaufmann, S. H. E., (Ed), Heat shock proteins and immune response. Curr. Topics Microbiol. Immun.167 (1991).Google Scholar
  40. 40.
    Koroshetz, W. J., and Bonventre, J. V., Heat shock response in the central nervous system. Experientia50 (1994) 1085–1091.PubMedGoogle Scholar
  41. 41.
    Lesk, A. M., and Hardman, K. D., Computer-generated pictures of proteins. Meth. Enzym.115 (1985) 381–390.PubMedGoogle Scholar
  42. 42.
    Maresca, B., and Kobayashi, G. S., Hsp70 in parasites: as an inducible protective protein and as an antigen. Experientia50 (1994) 1067–1074.PubMedGoogle Scholar
  43. 43.
    Mariéthoz, E., Tacchini-Cottier, F., Jacquier-Sarlin, M., Sinclair, F., and Polla, B. S., Exposure of monocytes to heat shock does not increase class II expression but modulates antigen-dependent T cell responses. Int. Immun.6 (1994) 925–930.PubMedGoogle Scholar
  44. 44.
    McKay, D. B., Wilbanks, S. M., Flaherty, K. M., Ha, J.-H., O'Brien, M. C., and Shirvanee, L. L., Stress-70 proteins and their interaction with nucleotides. see ref. 46 , pp. 153–177.Google Scholar
  45. 45.
    Morimoto, R. I., Tissieres, A., and Georgopoulos, C, (Eds), Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1990.Google Scholar
  46. 46.
    Morimoto, R. I., Tissieres, A., and Georgopoulos, C., (Eds), The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994.Google Scholar
  47. 47.
    Morimoto, R. I., Jurivich, D. A., Kroeger, P. E., Mathur, S. K., Murphy, S. P., Nakai, A., Sarge, K., Abravaya, K., and Sistonen, L. T., Regulation of heat shock gene transcription by a family of heat shock factors. see ref. 46 pp. 417–455.Google Scholar
  48. 48.
    Moseley, P. L., Wallen, E. S., McCafferty, J. D., Flanagan, S., and Kern, J. A., Heat stress regulates the human 70-kDa heat-shock gene through the 3′-untranslated region. Am. J. Physiol.264 (1993) L533-L537.PubMedGoogle Scholar
  49. 49.
    Nadeau, K., Nadler, S. G., Saulnier, M., Tepper, M. A., and Walsh, C. T., Quantitation of the interaction of the immuno-suppressant deoxyspergualin and analogs with hsc70 and hsp90. Biochemistry33 (1994) 2561–2567.PubMedGoogle Scholar
  50. 50.
    Neefjes, J. J., and Momburg, F., Cell biology of antigen presentation. Curr. Opinion Immun.5 (1993) 27–34.Google Scholar
  51. 51.
    Otterson, G. A., Flynn, G. C., Kratzke, R. A., Coxon, A., Johnston, P. G., and Kaye, F. J.,Stch encodes the ‘ATPase core’ of a microsomal stress70 protein. EMBO J.13 (1994) 1216–1225.PubMedGoogle Scholar
  52. 52.
    Palleros, D. R., Reid, K. L., Shi, L., Welch, W. J., and Fink, A. L., ATP-induced protein-hsp70 complex dissociation requires K+ and does not involve ATP hydrolysis. Analogy to G proteins. Nature365 (1993) 664–666.PubMedGoogle Scholar
  53. 53.
    Partanen, J., Milner, C., Campbell, R. D., Mäki, M., Lipsanen, V., and Koskimies, S., HLA-linked heat-shock protein 70 (HSP 70-2) gene polymorphism and celiac disease. Tissue Antigens41 (1993) 15–19.PubMedGoogle Scholar
  54. 54.
    Perdrizet, G. A., Kaneko, H., Buckley, T. M., Fishman, M. S., Pleau, M., Bow, L., and Schweizer, R. T., Heat shock and recovery protects renal allografts from warm ischemia injury and enhances HSP72 production. Transplantn Proc.25 (1993) 1670–1673.Google Scholar
  55. 55.
    Pierce, S. K., Molecular chaperones in the processing and presentation of antigen to helper T cells Experientia50 (1994) 1026–1030.PubMedGoogle Scholar
  56. 56.
    Polla, B. S., Perin, M., and Pizurki, L. Regulation and functions of stress proteins in allergy and inflammation. Clin. expl Allergy23 (1993) 548–556.Google Scholar
  57. 57.
    Pratt, W. B., Scherrer, L. C., Hutchison, K. A., and Dalman, F. C., A model of glucocorticoid receptor unfolding and stabilization by a heat shock protein complex. J. Steroid Biochem. molec. Biol.41 (1992) 223–229.PubMedGoogle Scholar
  58. 58.
    Pratt, W. B., Czar, M. J., Stancato, L. F., and Owens, J. K., The hsp56 immunophilin component of the steroid receptor heterocomplexes: could this be the elusive nuclear localization signal-binding protein. J. Steroid Biochem. molec. Biol.46 (1993) 269–279.PubMedGoogle Scholar
  59. 59.
    Ratanachaiyavong, S., Demaine, A. G., Campbell, R. D., and McGregor, A. M., Heat shock protein 70 (HSP70) and complement C4 genotypes in patients with hyperthyroid Graves' disease. Clin. expl Immun.84 (1991) 48–52.Google Scholar
  60. 60.
    Rippmann, F., Taylor, W. R., Rothbard, J. R., and Green, N. M., A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. EMBO J.10 (1991) 1053–1059.PubMedGoogle Scholar
  61. 61.
    Ritossa, F., A new puffing pattern induced by temperature shock and DNP inDrosophila. Experientia18 (1962) 571–573.Google Scholar
  62. 62.
    Román, E., Moreno, C., and Young, D., Mapping of hsp70-binding sites on protein antigens. Eur. J. Biochem.222 (1994) 65–73.PubMedGoogle Scholar
  63. 63.
    Rothman, J. E., Polypeptide chain binding proteins: Catalysts of protein folding and related processes in cells. Cell59 (1989) 591–601.PubMedGoogle Scholar
  64. 64.
    Santoro, M. G., Heat shock proteins and virus replication: Hsp70 as mediators of the antiviral effects of prostaglandins. Experientia50 (1994) 1039–1047.PubMedGoogle Scholar
  65. 65.
    Schirmbeck, R., and Reimann, J., Peptide transporter-independent, stress protein-mediated endosomal processing of endogenous protein antigens for major histocompatibility complex class I presentation. Eur. J. Immun.24 (1994) 1478–1486.Google Scholar
  66. 66.
    Schmidt, J. A., and Abdulla, E., Down-regulation of IL-1β biosynthesis by inducers of the heat-shock response. J. Immun.141 (1988) 2027–2034.PubMedGoogle Scholar
  67. 67.
    Srivastava, P., and Maki, R. G., Stress-induced proteins in immune response to cancer. Curr. Topics Microbiol. Immun.167 (1991) 109–123.Google Scholar
  68. 68.
    Srivastava, P. K., Heat shock proteins in immune response to cancer: The fourth paradigm. Experientia50 (1994) 1054–1060.PubMedGoogle Scholar
  69. 69.
    Stover, C. K., Cruz, V. F. de la., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H., Hatfull, G. F., Snapper, S. B., Barletta, R. G., Jacobs, W. R. Jr., and Bloom, B. R., New use of BCG for recombinant vaccines. Nature351 (1991) 456–460.PubMedGoogle Scholar
  70. 70.
    Stuart, R. A., Cyr, D. M., and Neupert, W., Hsp70 in mitochondrial biogenesis: From chaperoning nascent polypeptide chains to facilitation of protein degradation. Experientia50 (1994) 1002–1011.PubMedGoogle Scholar
  71. 71.
    Terlecky, S. R., Chiang, H. L., Olson, T. S., and Dice, J. F., Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J. biol. Chem.267 (1992) 9202–9209.PubMedGoogle Scholar
  72. 72.
    Terlecky, S. R., Hsp70 and lysosomal proteolysis. Experientia50 (1994) 1021–1025.PubMedGoogle Scholar
  73. 73.
    Todd, M. J., Viitanen, P. V., and Lorimer, G. H., Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science265 (1994) 659–666.PubMedGoogle Scholar
  74. 74.
    Van Eden, W., Heat shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immun. Rev.121 (1991) 1–27.Google Scholar
  75. 75.
    Villar, J., Edelson, J. D., Post, M., Mullen, B. M., and Slutzky, A. S., Induction of heat stress proteins is associated with decreased mortality in animal models of acute lung injury. Am. Rev. respir. Dis.147 (1993) 177–181.PubMedGoogle Scholar
  76. 76.
    Wadhwa, R., Kaul, S. C., and Mitsui, Y., Cellular mortality to immortalization: mortalin. Cell Struct. Funct.19 (1994) 1–10.PubMedGoogle Scholar
  77. 77.
    Winfield, J., and Jarjour, W., Do stress proteins play a role in arthritis and autoimmunity? Immun. Rev.121 (1991) 193–220.PubMedGoogle Scholar
  78. 78.
    Wynn, R. M., Davie, J. R., Cox, R. P., and Chuang, D. T., Molecular chaperones: heat shock proteins, foldases, and matchmakers. J. Lab. clin. Med.124 (1994) 31–36.PubMedGoogle Scholar
  79. 79.
    Yang, X.-D., and Feige, U., Heat shock proteins in autoimmune disease. From cuasative antigen to specific therapy? Experientia48 (1992) 650–656.PubMedGoogle Scholar
  80. 80.
    Yellon, D. M., and Marber, M. S., Hsp70 in myocardial ischemia. Experientia50 (1994) 1075–1084.PubMedGoogle Scholar
  81. 81.
    Young, D. B., Mehlert, A., and Smith, D. F., Stress proteins in infectious diseases. see ref. 45, pp. 131–165.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • U. Feige
    • 1
  • B. S. Polla
    • 2
    • 3
  1. 1.Research DepartmentPharmaceuticals Division, Ciba-Geigy, R-1056.184Basel(Switzerland)
  2. 2.Allergy UnitUniversity HospitalGeneva 14(Switzerland)
  3. 3.Laboratory for Respiratory PhysiologyUFR Cochin Port-RoyalParis(France)

Personalised recommendations