, Volume 33, Issue 9, pp 1189–1190 | Cite as

Transport of sodium, water, 3-O-methyl-glucose and L-phenylalanine in vitro in biotin-deficient rats intestine

  • F. Petrelli
  • S. Coderoni
  • P. Moretti
  • M. Paparelli


In biotin-deficient rats, a decreased intestinal transport of Na+, H2O and L-phenylalanine, and no transport differences of 3-O-methyl-D-glucose were observed. The lower Na+ and L-phenylalanine transport appears to be referable to a decreased energy availability and probably not to the lack of a carrier.


Sodium Energy Availability Intestinal Transport Transport Difference Decrease Energy Availability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Dakshinamurti and S. Litvak, J. biol. Chem.245, 5600 (1970).PubMedGoogle Scholar
  2. 2.
    R. L. Boeckx and K. Dakshinamurti, Proc. Can. Fed. Biol. Soc.15, 200 (1972).Google Scholar
  3. 3.
    R. L. Boeckx and K. Dakshinamurti, Biochem. J.140, 549 (1974).PubMedGoogle Scholar
  4. 4.
    K. Dakshinamurti and C. Cheah-Tan, Archs Biochem. Biophys.127, 17 (1970).Google Scholar
  5. 5.
    K. Dakshinamurti, L. Tarrago-Litvak and H. C. Hong, Can. J. Biochem.48, 493 (1970).PubMedGoogle Scholar
  6. 6.
    F. Petrelli, G. Marsili and G. Centioni, Boll. Soc. it. Biol. sper.49, 1332 (1973).Google Scholar
  7. 7.
    R. L. Boeckx and K. Dakshinamurti, Biochim. biophys. Acta383, 282 (1975).PubMedGoogle Scholar
  8. 8.
    F. Petrelli, G. Marsili and P. Moretti, Biochem. exp. Biol., in press.Google Scholar
  9. 9.
    K. Dakshinamurti, V. V. Modi and S. P. Mistry, Proc. Soc. exp. Biol. Med.127, 396 (1968).PubMedGoogle Scholar
  10. 10.
    K. Dakshinamurti and P. R. Desjardins, Can. J. Biochem.46, 1261 (1968).PubMedGoogle Scholar
  11. 11.
    K. Dakshinamurti, M. A. Sabir and C. Bhuvaneswaran, Archs Biochem. Biophys.137, 30 (1970).Google Scholar
  12. 12.
    C. Bhuvaneswaran and K. Dakshinamurti, Archs Biochem. Biophys.142, 665 (1971).Google Scholar
  13. 13.
    C. Bhuvaneswaran and K. Dakshinamurti, Int. J. Biochem.5, 819 (1974).Google Scholar
  14. 14.
    A. S. Atwal, A. R. Robblee and L. P. Milligan, J. Nutr.101, 1555 (1971).PubMedGoogle Scholar
  15. 15.
    T. H. Wilson and G. Wiseman, J. Physiol.123, 116 (1954).PubMedGoogle Scholar
  16. 16.
    H. A. Krebs and K. Henseleit, Z. Physiol. Chem.210, 33 (1932).Google Scholar
  17. 17.
    A. Faelli, G. Esposito and V. Capraro, Archs Sci. Biol.50, 234 (1966).Google Scholar
  18. 18.
    G. Esposito, A. Faelli and V. Capraro, Pflügers Arch.340, 335 (1973).Google Scholar
  19. 19.
    G. Esposito, T. Z. Csaky, Archs J. Physiol.226, 50 (1974).Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • F. Petrelli
    • 1
  • S. Coderoni
    • 1
  • P. Moretti
    • 1
  • M. Paparelli
    • 1
  1. 1.Institute of General PhysiologyUniversity of Camerino(Italy)

Personalised recommendations