Skip to main content
Log in

The extracellular matrix during heart development

  • Multi-author Reviews
  • Extracellular Matrix in Animal Development
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The embryonic extracellular matrix, which is comprised of glycosaminoglycans, glycoproteins, collagens, and proteoglycans, is believed to play multiple roles during heart morphogenesis. Some of these ECM components appear throughout development, however, certain molecules exhibit an interesting transient spatial and temporal distribution. Due to significant new data that have been gathered predominantly in the past 10 years, a comprehensive review of the literature is needed. The intent of this review is to highlight work that addresses mechanisms by which extracellular matrix influences vertebrate heart development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alho, A. M., and Underhill, C. B., The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J. Cell Biol.108 (1989) 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  2. Argraves, W. S., Dickerson, K., Burgess, W. H., and Ruoslahti, E., Fibulin, a novel protein that interacts with the fibronectin receptor B subunit cytoplasmic domain. Cell58 (1989) 623–629.

    Article  CAS  PubMed  Google Scholar 

  3. Argraves, W. S., Tran, H., Burgess, W. H., and Dickerson, K., Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J. Cell Biol.111 (1990) 3155–3164.

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong, P. B., and Armstrong, M. T., A role for fibronectin in cell sorting. J. Cell Sci.69 (1984) 179–197.

    Article  CAS  PubMed  Google Scholar 

  5. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B., CD44 is the principal cell surface receptor for hyaluronate. Cell61 (1990) 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  6. Balbona, K., Tran, H., Godyna, S., Ingham, K. C., Strickland, D. K., and Argraves, W. S., Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J. biol. Chem.267 (1992) 20120–20125.

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin, H. S., and Buck, C. A., Integrins and other cell adhesion molecules in cardiac development. Trends cardiovasc. Med.4 (1994) 178–187.

    Article  CAS  PubMed  Google Scholar 

  8. Baldwin, H. S., Lloyd, T. R., and Solursh, M., Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ. Circ. Res.74 (1994) 244–252.

    Article  CAS  PubMed  Google Scholar 

  9. Bernanke, D. H., and Markwald, R. R., Cardiac cushion morphogenetic events in a three-dimensional collagen lattice culture model. Devl Biol.91 (1982) 235–245.

    Article  CAS  Google Scholar 

  10. Bogers, A. J. J. C., Gittenberger-de Groot, A. C., Poelmann, R. E., Peault, B. M., and Huysmans, H. A., Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat. Embryol.180 (1989) 437–441.

    Article  CAS  Google Scholar 

  11. Borg, T. K., Raso, D. S., and Terracio, L., Potential role of the extracellular matrix in postseptation development of the heart. Ann. N. Y. Acad. Sci.588 (1990) 87–92.

    Article  CAS  PubMed  Google Scholar 

  12. Burroughs, C. L., Watanabe, M., and Morse, D. E., Distribution of the neural cell adhesion molecule (NCAM) during heart development. J. molec. cell. Cardiol.23 (1991) 1411–1422.

    Article  CAS  Google Scholar 

  13. Burry, A. F., Supra-aortic stenosis associated with Marfan's syndrome. Br. Heart J.20 (1958) 143–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carver, W., Price, R. L., Raso, D. S., Terracio, L., and Borg, T. K., Distribution of B-1 integrin in the developing rat heart. J. Histochem. Cytochem.42 (1994) 167–175.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y., Faraco, J., Yin, W., Germiller, J., Francke, U., and Bonadio, J., Structure, chromosomal localization, and expression pattern of the murine Magp gene. J. biol. Chem.268 (1993) 27381–27389.

    Article  CAS  PubMed  Google Scholar 

  16. Chin, C., Gandour-Edwards, R., Oltjen, S., and Choy, M., Fate of the atrioventricular endocardial cushions in the developing chick heart. Pediatr. Res.32 (1992) 390–393.

    Article  CAS  PubMed  Google Scholar 

  17. Chiquet-Ehrismann, R., Mackie, E. J., Pearson, C. A., and Sakakura, T., Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell47 (1986) 131–139.

    Article  CAS  PubMed  Google Scholar 

  18. Cleary, E. G., and Gibson, M. A., Elastin-associated microfibrils and microfibrillar proteins. Int. Rev. Connect. Tissue Res.10 (1983) 97–101.

    Article  CAS  PubMed  Google Scholar 

  19. Corless, C. L., Mendoza, A., Collins, T., and Lawler, J., Colocalization of thrombospondin and syndecan during murine development. Devl. Dyn.193 (1992) 346–358.

    Article  CAS  Google Scholar 

  20. Crossin, K. L., and Hoffman, S., Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Devl Biol.145 (1991) 277–286.

    Article  CAS  Google Scholar 

  21. Curran, M. E., Atkinson, D. L., Ewart, A. K., Morris, C. A., Leppert, M. F., and Keating, M. T., The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell73 (1993) 159–168.

    Article  CAS  PubMed  Google Scholar 

  22. Davis, C. L., The cardiac jelly of the chick embryo. Anat. Rec.27 (1924) 201–202.

    Google Scholar 

  23. Davis, L. A., Ogle, R. C., and Little, C. D., Embryonic heart mesenchymal cell migration in laminin. Devl Biol.133 (1989) 37–43.

    Article  CAS  Google Scholar 

  24. de la Cruz, M. V., Sanchez-Gomez, C., and Palomino, M. A., The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J. Anat.165 (1989) 121–131.

    PubMed  Google Scholar 

  25. Dietz, H., Cutting, G., Pyertiz, R., Maslen, C., Sakai, L., Corson, G., Puffenberger, E., Hamosh, A., Nanthakumar, E., Curristin, S., Stetten, G., Meyers, D., and Francomano, C., Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature352 (1991) 337–339.

    Article  CAS  PubMed  Google Scholar 

  26. Drake, C. J., Bouchey, D. M., Walter, L., Reichardt, L. F., and Little, C. D., Embryonic vitronectin. submitted 1995.

  27. Drake, C. J., Davis, L. A., Walters, L., and Little, C. D., Avian vasculogenesis and the distribution of collagens I, IV, laminin, and fibronectin in the heart primordia. J. expl. Zool.255 (1990) 309–322.

    Article  CAS  Google Scholar 

  28. Drake, C. J., and Jacobson, A. G., A survey by scanning electron microscopy of the extracellular matrix and endothelial compounds of the primordial chick heart. Anat. Rec.222 (1988) 391–400.

    Article  CAS  PubMed  Google Scholar 

  29. Eisenberg, R., Young, D., Jacovson, B., and Voito, A., Familial supravalvular aortic stenosis. Am. J. Dis. Child.108 (1964) 341–347.

    CAS  PubMed  Google Scholar 

  30. Ewart, A. K., Morris, C. A., Ensing, G. J., Loker, J., Moore, C., Leppart, M., and Keating, M., A human vascular disorder, supravalvular aortic stenosis, maps to chormosome 7. Proc. natl Acad. Sci. USA90 (1993) 3226–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fessler, J. H., A structural function of mucopolysaccharide in connective tissue. Biochem. J.76 (1960) 124–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Funderburg, F. M., and Markwald, R. R., Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration. J. Cell Biol.103 (1986) 2475–2487.

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher, B. C., Sakai, L. Y., and Little, C. D., Fibrillin delineates the primary axis of the early avian embryo. Devl Dyn.196 (1993) 70–78.

    Article  CAS  Google Scholar 

  34. Gallagher, J. T., Structure and function of heparan sulfate proteoglycans. Biochem J.236 (1986) 313–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garcia-Martinez, V., Sanchez-Quintana, Q., and Hurle, J. M., Histogenesis of the semilunar valves: an immunohistochemical analysis of tenascin and type-I collagen distribution in developing chick heart valves. Cell Tissue Res.259 (1990) 299–304.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Martinez, V., and Schoenwolf, G. C., Primitive-streak origin of the cardiovascular system in avian embryos. Devl Biol.159 (1993) 706–719.

    Article  CAS  Google Scholar 

  37. George, E. L., Georges-Labouesset, E. N., Patel-King, R., Rayburn, H., and Hynes, R. O., Defects of mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development119 (1993) 1079–1091.

    Article  CAS  PubMed  Google Scholar 

  38. Gessner, I. H., Lorinez, A. E., and Bostrom, H., Acid mucopolysaccharide content of the cardiac jelly of the chick embryo. J. expl Zool.160 (1965) 291–298.

    Article  CAS  Google Scholar 

  39. Gibson, M. A., Kumaratilake, J. S., and Clery, E. G., The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J. biol. Chem.264 (1989) 4590–4598.

    Article  CAS  PubMed  Google Scholar 

  40. Glukhova, M. A., and Thiery, J. P., Fibronectin and integrins in development. Semin. Cancer Biol.4 (1993) 215–218.

    Google Scholar 

  41. Grobstein, C., Tissue interaction in the morphogenesis of mouse embryonic rudiments in vitro, in: Aspects of Synthesis and Order in Growth, pp. 233–256. Ed. G. Rudnick. Princeton University Press, Princeton, New Jersey 1955.

    Google Scholar 

  42. Hamburger, V., and Hamilton, H. L., A series of normal stages in the development of the chick embryo. J. Morphol.88 (1951) 49–92.

    Article  CAS  PubMed  Google Scholar 

  43. Har-el, R., and Tanzer, M. L., Extracellular matrix 3: evolution of the extracellular matrix in invertebrates. FASEB J.7 (1993) 1115–1123.

    Article  CAS  PubMed  Google Scholar 

  44. Hay, D. A., Markwald, R. R., and Fitzharris, T. P., Selected views of early heart development by scanning electron microscopy. Scanning Electron Microscopy 1984 (L) 1983–1993.

  45. Hay, E. D., Collagen and embryonic development, in: Cell Biology of Extracellular Matrix, pp. 379–409. Ed. E. D. Hay. Plenum Publishing Corporation, New York 1981.

    Chapter  Google Scholar 

  46. Hay, E. D., Extracellular matrix. J. Cell Biol.91 (1981) 205s-223s.

    Article  CAS  PubMed  Google Scholar 

  47. Heintzberger, C. F. M., Development of myocardial vascularisation in the rat. Acta Morphol. Neerl. Scand.21 (1983) 267–284.

    CAS  PubMed  Google Scholar 

  48. Hoffman, S., Crossin, K. L., and Edelman, G. M., Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J. Cell Biol.106 (1988) 519–532.

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman, S., Crossin, K. L., Prediger, E. A., Cunningham, B. A., and Edelman, G., Expression and function of cell adhesion molecules during early development of the heart. Ann N. Y. Acad. Sci.588 (1990) 73–86.

    Article  CAS  PubMed  Google Scholar 

  50. Holzenberger, M., Ayer-Le Lievre, A., and Robert, L., Tropoelastin gene expression in the developing vascular system of the chicken: an in situ hybridization study. Anat. Embryol.188 (1993) 481–492.

    Article  CAS  Google Scholar 

  51. Horwitz, A., Duggan, F., Buck, C., Berkerle, M. C., and Burridge, K., Interaction of plasma membrane fibronectin receptor with talin — a transmembrane linkage. Nature320 (1986) 531–533.

    Article  CAS  PubMed  Google Scholar 

  52. Hynes, R. O., Integrins: a family of cell surface receptors. Cell48 (1987) 549–554.

    Article  CAS  PubMed  Google Scholar 

  53. Icardo, J. M., and Manasek, F. J., Fibronectin distribution during early chick embryo heart development. Devl Biol.95 (1983) 19–30.

    Article  CAS  Google Scholar 

  54. Iruela-Arispe, M. L., Liska, D. J., Sage, E. H., and Bornstein, P., Differential expression of thrombospondin 1, 2, and 3 during development. Devl Dyn.197 (1993) 40–56.

    Article  CAS  Google Scholar 

  55. Johnson, R. C., Manasek, F. J., Vinson, W. C., and Seyer, J. M., The biochemical and ultrastructural demonstration of collagen during early heart development. Devl Biol.36 (1974). 252–271.

    Article  CAS  Google Scholar 

  56. Johnston, P. M., and Comar, C. L., Autoradiographic studies of the utilization of S 35-sulfate by the chick embryo. J. biophys. biochem. Cytol.3 (1957) 231–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, P. L., Schmidhauser, C., and Bissell, M. J., Regulation of gene expression and cell function by extracellular matrix. Crit. Rev. Eukaryot. Gene Expr.3 (1993) 137–154.

    CAS  PubMed  Google Scholar 

  58. Kitten, G. T., Localization and functional interactions of fibronectin and associated basement membrane proteins during embyronic heart development. Ph.D. Texas Technical University, 1984.

  59. Kitten, G. T., Markwald, R. R., and Bolender, D. L., Distribution of basement membrane antigens in cryopreserved early embryonic hearts. Anat. Rec.217 (1987) 379–390.

    Article  CAS  PubMed  Google Scholar 

  60. Kluge, M., Mann, K., Dziadek, M., and Timpl, R., Characterization of a novel calcium-binding 90-kDa glycoprotein (BM-90) shared by basement membranes and serum. Eur. J. Biochem.193 (1990) 651–659.

    Article  CAS  PubMed  Google Scholar 

  61. Knudson, C. B., and Knudson, W., Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J.7 (1993) 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  62. Krug, E., Mjaatvedt, C. H., and Markwald, R. R., Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Devl Biol.120 (1987) 348–355.

    Article  CAS  Google Scholar 

  63. Krug, E. L., Runyan, R. B., and Markwald, R. R., Protein extracts from early embryonic hearts initiate cardiac endothelial cytodifferentiation. Devl Biol.112 (1985) 414–426.

    Article  CAS  Google Scholar 

  64. Lee, B., Godfrey, M., Vitale, E., Hori, H., Mattei, M.-G., Sarfarazi, M., Tsipouras, P., Ramirez, F., and Hollister, D. W., Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature352 (1991) 330–334.

    Article  CAS  PubMed  Google Scholar 

  65. Linask, K. K., and Lash, J. W., Precardiac cell migration: fibronectin localization at mesoderm-endoderm interface during directional movement. Devl Biol.114 (1986) 87–101.

    Article  CAS  Google Scholar 

  66. Linask, K. K., and Lash, J. W., A role for fibronectin in the migration of avian precardiac cells: I. dose-dependent effects of fibronectin antibody. Devl Biol.129 (1988) 315–323.

    Article  CAS  Google Scholar 

  67. Linask, K. K., and Lash, J. W., A role for fibronectin in the migration of avian precardiac cells: II. rotation of the heartforming region during different stages and its effects. Devl Biol.129 (1988) 324–329.

    Article  CAS  Google Scholar 

  68. Little, C. D., Piquet, D. M., Davis, L. A., Walters, L., and Drake, C. J., Distribution of laminin, collagen type IV, collagen type I, and fibronectin in chicken cardiac jelly/basement membrane. Anat. Rec.224 (1989) 417–425.

    Article  CAS  PubMed  Google Scholar 

  69. Loeber, C. P., and Runyan, R. B., A comparison of fibronectin, laminin, and galactosyltransferase adhesion mechanisms during embryonic cardiac mesenchymal cell migration in vitro. Devl Biol.140 (1990) 401–412.

    Article  CAS  Google Scholar 

  70. Lopez, C. A., and Martinez, M. S., The importance of extracellular matrix components in development of the embryonic chick heart. Persp. cardiovasc. Res.5 (1981) 167–179.

    Google Scholar 

  71. Lundgren, E., Gullberg, D., Rubin, K., Borg, T. K., Terracio, M. J., and Terracio, L., In vitro studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J. cell. Physiol.136 (1988) 43–53.

    Article  CAS  PubMed  Google Scholar 

  72. Manasek, F. J., Heart development: interactions involved in cardiac morphogenesis, in: The Cell Surface in Animal Embryogenesis and Development, pp. 545–598. Eds. G. Poste and G. L. Nicholson. Elsevier/North-Holland, Amsterdam 1976.

    Google Scholar 

  73. Manasek, F. J., Macromolecules of the extracellular compartment of embryonic and mature hearts. Circ. Res.38 (1976) 331–337.

    Article  CAS  PubMed  Google Scholar 

  74. Manasek, F. J., Structural glycoproteins of the embryonic cardiac extracellular matrix. J. molec. cell. Cardiol.9 (1977) 425–439.

    Article  CAS  Google Scholar 

  75. Manasek, F. J., Icardo, J., Nakamura, A., and Sweeney, L., Cardiogenesis: developmental mechanisms and embryology, in: The Heart and Cardiovascular System, pp. 965–985. Ed. H. A. Fozzard. Raven Press, New York 1986.

    Google Scholar 

  76. Manesek, F. J., Kulikowski, R. R., Nakamura, A., Nguyenphuc, W., and Lacktis, J. W., Early heart development: a new model of cardiac morphogenesis, in: Growth of the Heart in Health and Disease, pp. 105–130. Ed. R. Zak. Raven Press, New York 1984.

    Google Scholar 

  77. Manasek, F. J., Reid, M., Vinson, W., Seyer, J., and Johnson, R., Glycosaminoglycan synthesis by the early embryonic chick. Devl Biol.35 (1973) 332–348.

    Article  CAS  Google Scholar 

  78. Markwald, R. R., Fitzharris, T. P., Bank, H., and Manasek, F. J., Strutural analysis on the material organization of glycosaminoglycans in developing endocardial cushions. Devl Biol.62 (1978) 292–316.

    Article  CAS  Google Scholar 

  79. Markwald, R. R., Fitzharris, T. P., and Manasek, F. J., Structural development of endocardial cushions. Am. J. Anat.148 (1977) 85–120.

    Article  CAS  PubMed  Google Scholar 

  80. Markwald, R. R., Fitzharris, T. P., and Smith, W. N. A., Structural analysis of endocardial cytodifferentiation. Devl. Biol.42 (1975) 160–180.

    Article  CAS  Google Scholar 

  81. Markwald, R. R., Krug, E. L., Runyan, R. B., and Kitten, G. T., Proteins in cardiac jelly which induce mesenchyme formation, in: Cardiac Morphogenesis, pp. 60–68. Eds. V. J. Ferrans, G. Rosenquist and C. Weinstein. Elsevier, New York 1985.

    Google Scholar 

  82. Markwald, R. R., Mjaatvedt, C. H., Krug, E. L., and Sinning, A. R., Inductive interactions in heart development: role of cardiac adherons in cushion tissue formation. Ann. N. Y. Acad. Sci.588 (1990) 13–25.

    Article  CAS  PubMed  Google Scholar 

  83. Markwald, R. R., Runyan, R. B., Kitten, G. T., Funderberg, F. M., Bernanke, D. H., and Brauer, P. R., Use of collagen gel cultures to study heart development: proteoglycan and glycoprotein interactions during the formation of endocardial cushion tissue. in: The Role of the Extracellular Matrix in Development, pp. 323–350. Ed. R. L. Trelstad. A. R. Liss, New York 1984.

    Google Scholar 

  84. Markwald, R. R., and Smith, W. N. A., Distribution of mucosubstances in the developing rat heart. J. Histochem. Cytochem.20 (1972) 896–907.

    Article  CAS  PubMed  Google Scholar 

  85. Martin, G. R., and Timpl, R., Laminin and other basement membrane components. A. Rev. Cell Biol.3 (1987) 57–85.

    Article  CAS  Google Scholar 

  86. Mikawa, T., Borisov, A., Brown, A. M. C., and Fischman, D. A., Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. formation of the ventricular myocardium. Devl Dyn.193 (1992) 11–23.

    Article  CAS  Google Scholar 

  87. Miyake, K., Underhill, C. B., Lesley, J., and Kincade, P. W., Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J. expl. Med.172 (1990) 69–75.

    Article  CAS  Google Scholar 

  88. Mjaatvedt, C. H., Krug, E. L., and Markwald, R. R., An antiserum (ES1) against a particulate form of extracellular matrix blocks the transition of cardiac endothelium into mesenchyme in culture. Devl Biol.145 (1991) 219–230.

    Article  CAS  Google Scholar 

  89. Mjaatvedt, C. H., Lepera, R. C., and Markwald, R. R., Myocardial specificity for initiating endothelial-mesenchymal cell transition in embryonic chick heart correlates with a particulate distribution of fibronectin. Devl Biol.119 (1987) 59–67.

    Article  CAS  Google Scholar 

  90. Mjaatvedt, C. H., and Markwald, R. R., Induction of an epithelial-mesenchymal transition by an in vivo adheron like complex. Devl Biol.136 (1989) 118–128.

    Article  CAS  Google Scholar 

  91. Noble, N. A., Harper, J. R., and Border, W. A., In vivo interactions of TGF-beta and extracellular matrix. Probl. Growth Factor Res.4 (1992) 369–382.

    Article  CAS  Google Scholar 

  92. Noden, D. M., Embryonic origins and assembly of blood vessels. Am. Rev. respir. Dis.140 (1989) 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  93. Orkin, R. W., and Toole, B. P., Hyaluronidase activity and hyaluronate content of the developing chick embryo heart. Devl Biol.66 (1978) 308–320.

    Article  CAS  Google Scholar 

  94. Pan, T.-C., Kluge, M., Zhang, R.-Z., Mayer, U., Timpl, R., and Chu, M.-L., Sequence of extracellular mouse protein BM-90/fibulin and its calcium-dependent binding to other basement membrane ligands. Eur. J. Biochem.215 (1993) 733–740.

    Article  CAS  PubMed  Google Scholar 

  95. Pan, T.-C., Sasaki, T., Zhang, R.-Z., Fassler, R., Timpl, R., and Chu, M.-L., Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium-binding. J. Cell Biol.123 (1993) 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  96. Poelmann, R. E., Gittenberger-de Groot, A. C., Mentink, M. M. T., Bokenkamp, R., and Hogers, B., Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res.73 (1993) 559–568.

    Article  CAS  PubMed  Google Scholar 

  97. Poole, T. J., and Coffin, J. D., Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J. expl Zool.251 (1989) 224–231.

    Article  CAS  Google Scholar 

  98. Powers, D. A., Fish as model systems. Science246 (1989) 352–358.

    Article  CAS  PubMed  Google Scholar 

  99. Preissner, K. T., Structure and biological role of vitronectin. A. Rev. Cell Biol.7 (1991) 275–310.

    Article  CAS  Google Scholar 

  100. Price, R. L., Nakagawa, M., Terracio, L., and Borg, T. K., Ultrastructural localization of laminin on in vivo embryonic, neonatal, and adult rat cardiac myocytes and in early rat embryos raised in whole-embryo culture. J. Histochem. Cytochem.40 (1992) 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  101. Rawles, M. E., The heart-forming areas of the early blastoderm. Physiol. Zool.16 (1943) 22–42.

    Article  Google Scholar 

  102. Rezaee, M., Isokawa, K., Halligan, N., Markwald, R. R., and Krug, E. L., Identification of an extracellular 130-kDa protein involved in early cardiac morphogenesis. J. biol. Chem.268 (1993) 14411–14414.

    Article  Google Scholar 

  103. Risau, W., and Lemmon, V., Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Devl Biol.125 (1988) 441–450.

    Article  CAS  Google Scholar 

  104. Roark, E. F., Keene, D. R., Haudenschild, C. C., Godyna, S., Little, C. D., and Argraves, W. S., Fibulin-1 expression in human tissues and cell lines: fibulin-1 is a component of the amorphous cores of connective tissue elastic fibers. J. Histochem. Cytochem.43 (1995) 401–411.

    Article  CAS  PubMed  Google Scholar 

  105. Robinson, T. F., Factor, S. M., Capasso, J. M., Whittenburg, J. M., Blumenfeld, O. O., and Seifter, S., Morphology, composition, and function of struts between cardiac myoctyes of rat and hamster. Cell Tissue Res.249 (1987) 247–255.

    Article  CAS  PubMed  Google Scholar 

  106. Rooney, P., and Kumar, S., Inverse relationship between hyaluronan and collagens in development and angiogenesis. Differentiation54 (1993) 1–9.

    Article  CAS  PubMed  Google Scholar 

  107. Rosenbloom, J., Abrams, W. R., and Mecham, R., Extracellular matrix 4: the elastic fiber. FASEB J.7 (1993) 1208–1218.

    Article  CAS  PubMed  Google Scholar 

  108. Rosenquist, G. C., and DeHaan, R. L., Migration of precardiac cells in the chick embryo: a radioautographic study. Carnegie Inst. Wash. Publ. 625, Contrib. Embryol.38 (1966) 111–123.

    Google Scholar 

  109. Rosenquist, T. H., McCoy, J. R., Waldo, K. L., and Kirby, M. L., Origin and propagation of elastogensis in the developing cardiovascular system. Anat. Rec.221 (1988) 860–871.

    Article  CAS  PubMed  Google Scholar 

  110. Runyan, R. B., and Markwald, R. R., Invasion of mesenchyme into three-dimensional gels: a regional and temporal analysis of interaction in embryonic heart tissue. Devl Biol.95 (1983) 108–114.

    Article  CAS  Google Scholar 

  111. Ruoslahti, E., and Pierschbacher, M. D., New perspectives in cell adhesion: RGD and integrins. Science238 (1987) 491–497.

    Article  CAS  PubMed  Google Scholar 

  112. Sakai, L. Y., Keene, D. R., and Engvall, E., Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol.103 (1986) 2499–2509.

    Article  CAS  PubMed  Google Scholar 

  113. Sinning, A. R., Krug, E. L., and Markwald, R. R., Multiple glycoproteins localize to a particulate form of extracellular matrix in regions of the embryonic heart where endothelial cells transform into mesenchyme. Anat. Rec.232 (1992) 285–292.

    Article  CAS  PubMed  Google Scholar 

  114. Spence, S. G., Argraves, W. S., Walters, L., Hungerford, J. E., and Little, C. D., Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo. Devl Biol.151 (1992) 473–484.

    Article  CAS  Google Scholar 

  115. Stainier, D. Y. R., and Fishman, M. C., Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Devl Biol.153 (1992) 91–101.

    Article  CAS  Google Scholar 

  116. Stainier, D. Y. R., Lee, R. K., and Fishman, M. C., Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation. Development119 (1993) 31–40.

    Article  CAS  PubMed  Google Scholar 

  117. Stalsberg, H., and DeHaan, R. L., The precardiac areas and formation of the tubular heart in the chick embryo. Devl Biol.19 (1969) 128–159.

    Article  CAS  Google Scholar 

  118. Sumida, H., Nakamura, H., and Satow, Y., Distribution of vitronectin in the embryonic chick heart during endocardial cell migration. Arch. Histol. Cytol.53 (1990) 81–88.

    Article  CAS  PubMed  Google Scholar 

  119. Sumida, H., Nakamura, H., and Yasuda, M., Role of vitronectin in embryonic rat endocardial cell migration in vitro. Cell Tissue Res.268 (1992) 41–49.

    Article  CAS  PubMed  Google Scholar 

  120. Terracio, L., Gullberg, D., Rubin, K., and Borg, T. K., Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat. Rec.223 (1989) 62–71.

    Article  CAS  PubMed  Google Scholar 

  121. Thompson, R. P., Fitzharris, T. P., Denslow, S., and LeRoy, E. C., Collagen synthesis in the developing chick heart. Tex. Rep. Biol. Med.39 (1979) 305–314.

    CAS  PubMed  Google Scholar 

  122. Tidball, J. G., Distribution of collagens and fibronectin in the subepicardium during avian cardiac development. Anat. Embryol.185 (1992) 155–162.

    Article  CAS  Google Scholar 

  123. Toole, B. P., Proteoglycans and hyaluronan in morphogenesis and differentiation, Cell Biology of the Extracellular Matrix, pp. 305–341. Ed. B. Hay. Plenum Press, New York 1991.

    Chapter  Google Scholar 

  124. Turley, E. A., The role of a cell-associated hyaluronan-binding protein in fibroblast behaviour, in: The Biology of Hyaluronate, pp. 121–133. Eds. P. Evered and J. Whelan. Ciba Foundations Symp. 1989.

  125. Wenink, A. C. G., and Gittenberger-de Groot, A. C., Embryology of the mitral valve. Int. J. Cardiol.11 (1986) 75–84.

    Article  CAS  PubMed  Google Scholar 

  126. Werb, Z., Tremble, P., Behrendtsen, O., Crowley, E., and Damsky, C. H., Signal transduction through the fibronectin receptor induces collagenase and stromelysis gene expression. J. Cell Biol.109 (1989) 877–889.

    Article  CAS  PubMed  Google Scholar 

  127. Wheatley, S. C., Isacke, C. M., and Crossley, P. H., Restricted expression of the hyaluronan receptor, CD44, during postimplantation mouse embryogenesis suggests key roles in tissue formation and patterning. Development119 (1993) 295–306.

    Article  CAS  PubMed  Google Scholar 

  128. Wunsch, A. M., Little, C. D., and Markwald, R. R., Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Devl Biol.165 (1994) 585–601.

    Article  CAS  Google Scholar 

  129. Yin, W., Smiley, E., Germiller, J., Sanguineti, C., Lawton, T., Pereira, L., Ramirez, F., and Bonadio, J., Primary structure and developmental expression of Fbn-1, the mouse fibrillin gene. J. biol. Chem.270 (1995) 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  130. Yost, H. J., Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature357 (1992) 158–161.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, H., Apfelroth, S. D., Hu, W., Davis, E. C., Sanguineti, C., Bonadio, J., Mecham, R. P., and Ramirez, F., Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J. Cell Biol.124 (1994) 855–863.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, H.-Y., Chu, M.-L., Pan, T.-C., Sasaki, T., Timpl, R., and Ekblom, P., Extracellular matrix protein fibulin-2 is expressed in the embryonic endocardial cushion tissue and is a prominent component of valves in adult heart. Devl Biol.167 (1995) 18–26.

    Article  CAS  Google Scholar 

  133. Zhang, H.-Y., Kluge, M., Timpl, R., Chu, M.-L., and Ekblom, P., The extracellular matrix glycoproteins BM-90 and tenascin are expressed in the mesenchyme at sites of endothelial-mesenchymal conversion in the embryonic mouse heart. Differentiation52 (1993) 211–220.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, C.D., Rongish, B.J. The extracellular matrix during heart development. Experientia 51, 873–882 (1995). https://doi.org/10.1007/BF01921738

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01921738

Key words

Navigation