Skip to main content
Log in

Thermal decomposition of silver carbonate

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Conflicting results have been reported by different workers on the thermal decomposition of silver carbonate, Ag2CO3. In the present study, the decomposition mechanism was elucidated by various analytical methods; gas analysis (differential thermal gas analyses) in helium, carbon dioxide and oxygen flows with and without a P2O5 trap or a KOH trap, DTA-TG in a carbon dioxide flow and high-temperature X-ray diffraction analysis in a carbon dioxide flow.

The gas evolution at ca. 200‡C consisted of carbon dioxide. A simultaneous evolution of carbon dioxide and oxygen occurred at ca. 400‡C. Two endothermic peaks (ca. 189 and 197‡C) without weight change during the heating in a carbon dioxide atmosphere were due to the phase transition of silver carbonate from the normal viaΒ toα phase. The reverse transition occurred during the cooling.

Zusammenfassung

Die von verschiedenen Autoren veröffentlichten Resultate über die thermische Zersetzung von Silbercarbonat, Ag2CO3, sind widersprüchlich. In der vorliegenden Arbeit wurde der Zersetzungsmechanismus mittels unterschiedlicher analytischer Methoden aufgeklÄrt: Differenzthermische Gasanalytik in strömendem Helium, Kohlendioxid sowie Sauerstoff mit und ohne eine P2O5-Falle oder eine KOH-Falle, DTA-TG in strömendem CO2 und Hochtemperatur-Röntgendiffraktion in strömendem CO2.

Die Gasentwicklung bei ca. 200‡C bestand aus CO2. Eine simultane Evolution von CO2 und O2 wurde bei ca. 400‡C beobachtet. Zwei endotherme Maxima (ca. 189 und 197‡C) ohne GewichtsÄnderung beim Aufheizen in CO2 AtmosphÄre wurden auf die Phasenumwandlung des Silbercarbonats von der normalen viaΒ- zurα-Phase zurückgeführt. Der umgekehrte Prozess lief wÄhrend des Kühlvorgangs ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.R. Choudhary, S. G. Pataskar and V. G. Gunjikar, in T. S. R. Prasada Rao Ed., Advances in Catalysis-Science and Technology, Wiley Eastern Ltd., New Delhi 1985, p. 131.

    Google Scholar 

  2. P. A. Barnes and F. S. Stone, Thermochim. Acta, 4 (1972) 105.

    Google Scholar 

  3. V. R. Choudhary and S. G. Pataskar, Mater. Chem. Phys., 14 (1986) 9.

    Article  Google Scholar 

  4. H. T. Spath and K. Torkar, J. Catal., 26 (1972) 163.

    Article  Google Scholar 

  5. H. T. Spath, G. S. Tomazic, H. Wurm and K. Torkar, J. Catal., 26 (1972) 18.

    Article  Google Scholar 

  6. T. Wydeven and E. Rand, J. Catal., 12 (1968) 271.

    Article  Google Scholar 

  7. N. A. Ashford and A. Snelson, J. Chem. Phys., 51 (1969) 532.

    Article  Google Scholar 

  8. T. Wydeven, J. Catal., 16 (1970) 82.

    Article  Google Scholar 

  9. T. Wydeven, Aust. J. Chem., 20 (1967) 2751.

    Google Scholar 

  10. T. Wydeven and M. Leban, Anal. Chem., 40 (1968) 363.

    Article  Google Scholar 

  11. Van Hattumet al., Joint Committee on Powder Diffraction Standards, 31-1236.

  12. Van Hattumet al., Joint Committee on Powder Diffraction Standards, 31-1237.

  13. N. Mizutani and M. Kato, Anal. Chem., 47 (1975) 1389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors thank Mr. M. Ogawa of our department for the DTA-TG, Mr. M. Amemiya and T. Sakatani of Rigaku Co., Ltd. for the high-temperature X-ray diffraction analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, Y., Manabe, K. Thermal decomposition of silver carbonate. Journal of Thermal Analysis 37, 1657–1663 (1991). https://doi.org/10.1007/BF01912194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01912194

Keywords

Navigation