Skip to main content
Log in

The thermal decomposition of silver dinitramide AgN(NO2)2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silver dinitramide AgN(NO2)2 was prepared, and its structure was characterized by UV–Visible absorption spectra, Fourier transform infrared (FT-IR) spectra and Fourier transform Raman spectra. Its thermal decomposition process was investigated by differential scanning calorimetry and thermogravimetric analysis coupled with the gas analysis by FT-IR (EGA-FT-IR). The intermediate and final products of thermal decomposition were analyzed by FT-IR, Raman spectra and X-ray diffraction. Kissinger method and Ozawa methods were used to calculate apparent activation energy E a, the pre-exponential constant lg A and linear correlation coefficient r. The results showed that the degradation process of AgN(NO2)2 could be divided into two stages. The first one with a mass loss of 21.86 % took place in 408–483 K, in which N2O was released and the intermediate product of thermal decomposition was AgNO3. The second stage with a mass loss of 28.24 % occurred in 483–800 K. In this process, gases NO2 and O2 were evolved and Ag was the final product of thermal decomposition. Kissinger method results: E a = 66.59 kJ mol−1, lg A = 7.21 min−1 and r = 0.9913. Ozawa method results: E a = 70.53 kJ mol−1, r = 0.9987.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venkatachalam S, Santhosh G, Ninan KN. An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propellants Explos Pyrotech. 2004;3(29):178–87.

    Article  Google Scholar 

  2. Klapötke TM, Mayer P, Schulz A, Weigand JJ. 1,5-Diamino-4-methyltetrazolium dinitramide. J Am Chem Soc. 2005;127(7):2032–3.

    Article  Google Scholar 

  3. Galvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth H, Polborn K, Rohbogner CJ, Suter M, Weigand JJ. Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. Inorg Chem. 2005;44(12):4237–53.

    Article  CAS  Google Scholar 

  4. Gilardi R, Flippenanderson J, George AC, Butcher RJ. A new class of flexible energetic salts: the crystal structures of the ammonium, lithium, potassium, and cesium salts of dinitramide. J Am Chem Soc. 1997;119(40):9411–6.

    Article  CAS  Google Scholar 

  5. Bottaro JC, Penwell PE, Schmitt RJ. 1,1,3,3-Tetraoxo-1,2,3-triazapropene anion, a new oxy anion of nitrogen: the dinitramide anion and its salts. J Am Chem Soc. 1997;119:9405–10.

    Article  CAS  Google Scholar 

  6. Chen BL, Jin B, Peng RF, Yi JH, Guan HJ, Bu XB, Chu SJ. Synthesis characterization and thermal decomposition of fullerene ethylenediamine dinitramide. Chin J Energy Mater. 2014;22:467–72.

    CAS  Google Scholar 

  7. Fischer N, Joas M, Klapötke TM, Stierstorfer J. Transition metal complexes of 3-amino-1-nitroguanidine as laser ignitible primary explosives: structures and properties. Inorg Chem. 2013;52(23):13791–802.

    Article  CAS  Google Scholar 

  8. Xiao LB, Zhao FQ, Luo Y, Xing XL, Gao HX, Li N, Li X, Hu RZ. Dissolution properties of ammonium dinitramide in N-methyl pyrrolidone. J Therm Anal Calorim. 2014;117(1):517–21.

    Article  CAS  Google Scholar 

  9. Zhang T, Li GX, Yu YS, Sun ZY, Wang M, Chen J. Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster. Energy Convers Manag. 2014;87:965–74.

    Article  CAS  Google Scholar 

  10. Klapötke TM, Schmid PC, Schnell S, Stierstorfer JJ. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4,4′,5,5′-tetraamino-3,3′-bi-1,2,4-triazolium cation 4,4′,5,5′-tetraamino-3,3′-bi-1,2,4-triazolium cation. J Mater Chem A. 2015;3:2658–68.

    Article  Google Scholar 

  11. Wingborg N, Latypov NV. Triaminoguanidine dinitramide, TAGDN: synthesis and characterization. Propellants Explos Pyrotech. 2003;28(6):314–8.

    Article  CAS  Google Scholar 

  12. Singh RP, Verma RD, Meshri DT, Shreeve JM. Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed. 2006;45(22):3584–601.

    Article  CAS  Google Scholar 

  13. Berger B, Bircher H, Studer M, Wälchli M. Alkali dinitramide salts. Part 1: synthesis and characterization. Propellants Explos Pyrotech. 2005;30(3):184–90.

    Article  CAS  Google Scholar 

  14. Stmark H, Bemm U, Bergman H, Langlet A. N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications. Thermochim Acta. 2002;384(1):253–9.

    Article  Google Scholar 

  15. Silva GD, Rufino SC, Iha K. Green propellants-oxidizers. J Aerosp Technol Manag. 2013;5(2):139–44.

    Article  Google Scholar 

  16. Zeng Z, Wang R, Twamley B, Parrish DA, Shreeve JNM. Polyamino-substituted guanyl-triazole dinitramide salts with extensive hydrogen bonding: synthesis and properties as new energetic materials. Chem Mater. 2008;20(19):6176–82.

    Article  CAS  Google Scholar 

  17. Fischer G, Holl G, Klapötke TM, Weigand JJ. A study on the thermal decomposition behavior of derivatives of 1,5-diamino-1H-tetrazole (DAT): a new family of energetic heterocyclic-based salts. Thermochim Acta. 2005;437(1–2):168–78.

    Article  CAS  Google Scholar 

  18. Ang H, Fraenk W, Karaghiosoff K, Klap TM, Mayer P, Th HNO, Sprott J, Warchhold M. Synthesis, characterization, and crystal structures of Cu, Ag, and Pd dinitramide salts. Z Anorg Allg Chem. 2002;628(13):2894–900.

    Article  CAS  Google Scholar 

  19. Luk’Yanov OA, Anikin OV, Gorlelik VP, Tartakovsky Tartakovsky VA. General and inorganic chemistry. Dinitramide and its salts. 3.8 metallic salts of dinitramide. Russ Chem Bull. 1994;43(9):1457–61.

    Article  Google Scholar 

  20. Luk’Yanov OA, Jgevnin AR, Leichenko AA, Seregina NM, Tartakovsky VA. Organic chemistry dinitramide and its salts. 6.*dinitramide salts derived from ammonium bases. Russ Chem Bull. 1995;44(1):108–12.

    Article  Google Scholar 

  21. Fischer N, Klapötke TM, Stierstorfer J. 1-Amino-3-nitroguanidine (ANQ) in high-performance Ionic energetic materials. Z Naturforsch B: Chem Sci. 2012;67(6):573–88.

    Article  CAS  Google Scholar 

  22. Klapötke TM, Krumm B, Scherr M. First structural characterization of solvate-free silver dinitramide, Ag[N(NO2)2]. Dalton Trans. 2008;43:5876–8.

    Article  Google Scholar 

  23. Lei M, Liu ZR, Kong YH, Yin CM, Wang BZ, Wang Y. Zhang P. Thermochim Acta. 1999;335:113–20.

    Article  CAS  Google Scholar 

  24. Shlyapochnikov EA, Cherskaya NO, Luk’Yanov OA, Gorelik EP, Tartakovsky ED. Dinitramide and its salts 4.* molecular structure of dinitramide. Russ Chem B. 1994;43(9):1522–5.

    Article  Google Scholar 

  25. Christe KO, Wilson WW, Petrie MA, Michels HH, Bottaro JC, Gilardi R. The dinitramide anion, N(NO2) 2 . Inorg Chem. 1996;35(17):5068–71.

    Article  CAS  Google Scholar 

  26. Lide DR. CRC handbook of chemistry and physics. 90th ed. Boca Raton: CRC Press; 2009 (section 4 p:82).

    Google Scholar 

  27. Otto K, Acik IO, Krunks M, Tõnsuaadu K, Mere A. Thermal decomposition study of HAuCl4·3H2O and AgNO3 as precursors for plasmonic metal nanoparticles. J Therm Anal Calorim. 2014;118(2):1065–72.

    Article  CAS  Google Scholar 

  28. Dag Ö, Samarskaya O, Tura C, Günay A, Çelik Ö. Spectroscopic investigation of nitrate–metal and metal–surfactant interactions in the solid AgNO3/C12EO10 and liquid-crystalline [M(H2O) n ](NO3)2/C12EO10 systems. Langmuir. 2003;19(9):3671–6.

    Article  CAS  Google Scholar 

  29. Balasubrahmanyam K, Janz GJ. Molten mixtures of AgNO3 and TlNO3: Raman spectra and structure. J Chem Phys. 1972;57:4089–91.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  31. Yang RT, Steinberg M. Differential thermal analysis and reaction kinetics for nth-order reaction. Anal Chem. 1977;49(7):998–1001.

    Article  CAS  Google Scholar 

  32. Hu RZ, Shi QZ. Thermal analysis kinetics. Beijing: Science Press; 2001.

    Google Scholar 

  33. Yi JH, Zhao FQ, Xu SY, Zhang LY, Gao HX, Hu RZ. J Hazard Mater. 2009;165(1–3):853–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 51372211), Youth Innovation Research Team of Sichuan for Carbon Nanomaterials (2011JTD0017) and Southwest University of Science and Technology Researching Project (13ZX9107, 14TDFK05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Jin, B., Peng, R. et al. The thermal decomposition of silver dinitramide AgN(NO2)2 . J Therm Anal Calorim 126, 1491–1498 (2016). https://doi.org/10.1007/s10973-016-5643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5643-z

Keywords

Navigation