Skip to main content
Log in

Changes in cardiac glycogen synthase and phosphorylase activities following stimulation of beta-adrenergic receptors in rats

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Following a subcutaneous injection of isoprenaline into rats (5 mg·kg−1 b.w.) the cardiac glycogen stores were depleted by about 90% in less than 15 min. Complete restoration of myocardial glycogen was slow (more than 7–8 hours) despite an elevated glycogen synthase activity. A cardioselective beta-adrenergic receptor blockade (using atenolol) resulted in a complete restoration of glycogen stores in 30 min.

The results indicate that the potential of myocardial tissue for glycogenogenesis is great but this capability is obscured by continuous glycogenolysis induced by a long-term activation of phosphorylase. The relative importance of beta-receptor stimulation and actual glycogen level in the control of cardiac synthase is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolfsson S, Isaksson O, Hjalmarson A (1972) Effect of insulin on glycogen synthesis and synthetase enzyme activity in the perfused rat heart. Biochim Biophys Acta 279:146–156

    PubMed  Google Scholar 

  2. Aussedat J (1983) Effect of uridine supply on glycogen resynthesis after ischaemia in the isolated perfused rat heart. Cardiovasc Res 17:145–151

    PubMed  Google Scholar 

  3. Aussedat J, Verdetti J, Grably S, Rossi A (1982) Nucléotides uridyliques et glycogènes cardiaques: effet de l'administration d'uridine et de ribose chez le rat. J Physiol, Paris 78:331–336.

    Google Scholar 

  4. Bergmeyer HU, Bernt E, Schmidt F, Stork H (1963) D-glucose determination with hexokinase and glucose 6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, Inc. New York San Francisco London, pp 1196–1201

    Google Scholar 

  5. Danforth WH (1965) Glycogen-synthetase activity in skeletal muscle. Interconversion of two forms and control of glycogen synthesis. J Biol Chem 240:588–593

    PubMed  Google Scholar 

  6. Gilboe DP, Larson KL, Nuttall FQ (1972) Radioactive method for the assay of glycogenphosphorylase. Anal Biochem 47:20–27

    PubMed  Google Scholar 

  7. Gilboe DP, Nuttall FQ (1972) Preparation of tissue extracts for glycogen phosphorylase assay. Anal Biochem 47:28–38

    PubMed  Google Scholar 

  8. Gold AH (1970) On the possibility of metabolite control of liver glycogen synthetase activity. Biochemistry 9:946–952

    PubMed  Google Scholar 

  9. Hewitt RL, Lolley DM, Adrouny GA, Drapanas T (1973) Protective effect of myocardial glycogen on cardiac function during anoxia. Surgery 73:444–453

    PubMed  Google Scholar 

  10. Huijing F, Nuttall FQ, Villar-Palasi C, Larner J (1969) UDP glucose: α-1,4-glucan α-4-glucosyltransferase in heart regulation of the activity of the transferase “in vivo” and “in vitro” in rat. A dissociation in the action of insulin on transport and on transferase conversion. Biochim Biophys Acta 177:204–212

    PubMed  Google Scholar 

  11. Larner J (1976) Mechanisms of regulation of glycogen synthesis and degradation. Circ Res 38 (1):12–17

    Google Scholar 

  12. McCullough TE, Walsh DA (1979) Phosphorylation of glycogen synthase in the perfused rat heart. J Biol Chem 254(15):7336–7344.

    PubMed  Google Scholar 

  13. Morgan HE, Parmeggiani A (1964) Regulation of glycogenolysis in muscle. II. Control of glycogen phosphorylase reaction in isolated perfused heart. J Biol Chem 239:2435–2439

    PubMed  Google Scholar 

  14. Nuttall FQ, Gannon MC, Bergström WJ (1975) Insulin and epinephrine effects on heart glycogen synthase and phosphorylase activity. Am J Physiol 228:1815–1820

    PubMed  Google Scholar 

  15. Piras A, Rothman LB, Cabib E (1968) Regulation of muscle glycogen synthetase by metabolites. Differential effects on the I and D forms. Biochemistry 7:56–66

    PubMed  Google Scholar 

  16. Robison GA, Butcher RW, Øye I, Morgan HE, Sutherland EW (1965) The effect of epinephrine on adenosine 3′,5′-phosphate levels in the isolated perfused rat heart. Mol Pharmacol 1:168–177

    PubMed  Google Scholar 

  17. Sacristan A, Rosell-Perez M (1971) Interconversions of cardiac muscle glycogen synthetase. R Esp Fisiol 27:331–342

    Google Scholar 

  18. Scheuer J, Stezoski SW (1970) Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res 27:835–849

    PubMed  Google Scholar 

  19. Thomas JA, Schlender KK, Larner J (1968) A rapid filter paper assay for UDP glucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem 25:486–499

    PubMed  Google Scholar 

  20. Towart R, Schlossmann K, Kazda S (1981) Protection against cardiac anoxia—role and limitations of increased glycogen reserves in the isolated rat right ventricular strip. Basic Res Cardiol 76:639–646

    PubMed  Google Scholar 

  21. Williams BJ, Mayer SE (1966) Hormonal effects on glycogen metabolism in the rat in situ. Mol Pharmacol 2:454–464

    PubMed  Google Scholar 

  22. Williamson JR (1966) Kinetic studies of epinephrine effects in the perfused rat heart. Pharmacol Rev 18:205–210

    PubMed  Google Scholar 

  23. Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache Technik der extrem schnellen Abkühlung größerer Gewebsstücke. Pflügers Arch 270:399–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grably, S., Rossi, A. Changes in cardiac glycogen synthase and phosphorylase activities following stimulation of beta-adrenergic receptors in rats. Basic Res Cardiol 80, 175–181 (1985). https://doi.org/10.1007/BF01910465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01910465

Key words

Navigation