Skip to main content
Log in

Protein synthesis in the isolated perfused rat heart

Effects of mechanical work load, diastolic ventricular pressure and coronary pressure on amino acid incorporation and its transmural distribution into left ventricular protein

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The mechanisms involved in hypertrophy of the left ventricle were studied in Langendorff-perfused rat hearts by measuring the ventricular protein synthesis and its transmural distribution and by differentiating between the effects of changes in mechanical work load, intraventricular and coronary pressures. An increase in the aortic pressure from 7.85 kPa (80 cm of water) to 19.6 kPa (200 cm of water) in beating hearts increased phenylalanine incorporation into left ventricular protein from 1.4 to 2.0 μmol/g protein (p<0.02) during a two-hour perfusion. The protein synthesis was transmurally evenly distributed. A similar elevation in the perfusion pressure in potassium-arrested hearts caused an increase in phenylalanine incorporation from 1.5 to 1.9 μmol/ (p<0.05) when the intraventricular pressure was adjusted to zero, indicating that the increase in aortic (coronary) pressure and not the work loadper se was the reason for increased protein synthesis. Elevation of the end-diastolic pressure from zero to ∼ 2 kPa in beating hearts at an aortic pressure of 7.85 kPa, or from 7.85 kPa to 17.3 kPa in K+-arrested hearts, at an aortic pressure of 19.6 kPa caused a significant reduction in subendocardial protein synthesis, whereas subepicardial phenylalanine incorporation was at most only slightly affected. The energetic parameters, oxygen consumption, output of vasoactive purine compounds and distribution of coronary flow indicate that the increase in protein synthesis via the elevation in aortic pressure was not due to the abolition of partial anoxia, whereas the same parameters indicate that the transmural gradient in protein synthesis observed under certain conditions was due to subendocardial ischemia when the intraventricular pressure approached the aortic pressure in arrested hearts, which are evidently of restricted use for extended periods without special measures to limit the build-up of intraventricular pressure.

Zusammenfassung

Die Mechanismen der Hypertrophie der linken Herzkammer und die Unterschiede zwischen der Wirkung der mechanischen Arbeit, des intraventrikulären und koronararteriellen Druckes wurden in Langendorff-perfundierten Rattenherzen untersucht. Bei einer Erhöhung des Perfusionsdruckes von 7,85 kPA (80 cm Wasser) auf 19,6 kPa (200 cm Wasser) bei schlagenden Herzen vermehrte sich die Inkorporation der Aminosäure Phenylalanin von 1,4 auf 2,0 μmol/g Protein (p<0,02) während einer zweistündigen Perfusion. Die Proteinsynthese zeigte eine gleichmäßige transmurale Verteilung. Eine gleiche Erhöhung des Perfusionsdruckes in mit Kalium stillgestellten Herzen vermehrte die Inkorporation von Phenylalanin von 1,5 auf 1,9 μmol/g (p<0,05) wenn der intraventrikuläre Druck auf Null festgestellt wurde, woraus hervorgeht, daß die Erhöhung des Perfusionsdruckes und nicht die mechanische Arbeit per se die Ursache der vergrößerten Proteinsynthese war. Erhöhung des enddiastolischen Druckes schlagender Herzen von Null auf 2,1 kPa bei einem Perfusionsdruck von 7,85 kPa oder Steigerung des Kammerdrucks K-arretierter Herzen von 7,85 kPa auf 17,3 kPa bei einem Perfusionsdruck von 19,6 kPa verursachte eine wesentliche Verminderung der subendokardialen Proteinsynthese, während sich die subepikardiale Phenylalanininkorporation nur wenig veränderte.

Die Messung der energetischen Parameter, des Sauerstoffverbrauches und der Produktion der vasoaktiven Purinverbindungen sowie der transmuralen Verteilung der Myokarddurchblutung zeigten, daß die von dem erhöhten Perfusionsdruck verursachte Steigerung der Proteinsynthese nicht durch Beseitigung eines partiellen Sauerstoffmangels resultierte. Die gleichen Parameter sprechen andererseits dafür, daß der transmurale Gradient der Proteinsynthese unter bestimmten Bedingungen durch eine subendokardiale Ischämie bedingt war, wenn sich nämlich beim stillstehenden Herzen der Ventrikelinnendruck dem Aortendruck (Perfusionsdruck) nähert; stillstehende Herzen dürfen daher nicht ohne spezielle Regulierung des intraventrikulären Druckes über längere Zeit perfundiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schreiber, S. S., M. Oratz, M. A. Rothschild: Protein synthesis in the overloaded mammalian heart. Amer. J. Physiol.211, 314 (1966).

    PubMed  Google Scholar 

  2. Schreiber, S. S., M. A. Rothschild, C. Evans, F. Reff, M. Oratz: The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary perfusion. J. Clin. Invest.55, 1 (1975).

    PubMed  Google Scholar 

  3. Schreiber, S. S., D. J. Hearse, M. Oratz, M. A. Rothschild: Protein synthesis in prolonged cardiac arrest. J. Mol. Cell. Cardiol.9, 87 (1977).

    PubMed  Google Scholar 

  4. Wong, A. Y. K., P. M. Rautaharju: Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Amer. Heart J.75, 649 (1968).

    PubMed  Google Scholar 

  5. Howe, B. B., H. R. Weiss, S. B. Vilkes, M. M. Winburg: Pentaerythritol trinitrate and glycerol trinitrate on intramyocardial oxygenation and perfusion in the dog. Krogh analysis of transmural metabolism. Clin. Exp. Pharmacol. Physiol.2, 529 (1975).

    PubMed  Google Scholar 

  6. Weiss, H. R., J. A. Neubauer, J. A. Lipp, A. K. Sinha: Quantitative determination of regional oxygen consumption in the dog. Circulat. Res.42, 934 (1978).

    Google Scholar 

  7. Archie, J. P. Jr.: Intramyocardial pressure: Effect of preload on transmural distribution of systolic coronary blood flow. Amer. J. Cardiol.35, 904 (1975).

    PubMed  Google Scholar 

  8. Archie, J. P. Jr.: Transmural distribution of intrinsic and transmitted left ventricular diastolic intramyocardial pressure in dogs. Cardiovasc. Res.12, 255 (1978).

    PubMed  Google Scholar 

  9. Langendorff, O.: Untersuchungen am überlebenden Sauertierherzen. Pflügers Arch. ges. Physiol.61, 291 (1895).

    Google Scholar 

  10. Krebs, H. A., K. Henseleit: Untersuchungen über die Harnstoffbildung, im Tierkörper. Hoppe-Seylers Z. Physiol. Chem.210, 33 (1932).

    Google Scholar 

  11. Morgan, H. E., D. C. N. Earl, A. Broadus, E. B. Wolpert, K. E. Giger, L. S. Jefferson. Regulation of protein synthesis in heart muscle. I. Effects of amino acid levels on protein synthesis. J. Biol. Chem.246 2152 (1971).

    PubMed  Google Scholar 

  12. Morgan, H. E., M. J. Henderson, D. M. Regen, C. R. Park: Regulation of glucose uptake in muscle. I. The effect of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J. Biol. Chem.236, 253 (1961).

    PubMed  Google Scholar 

  13. Mahin, D. T., R. T. Lofberg: A simplified method of sample preparation for determination of tritium, carbon-14 or sulfur-35 in blood or tissue by liquid scintillation counting. Anal. Biochem.16, 500 (1966).

    Google Scholar 

  14. Rudolph, A. M., M. A. Heymann: Circulation of the fetus in utero: Methods for studying distribution of blood flow, cardiac output and organ blood blow. Circulat. Res.21, 163 (1967).

    PubMed  Google Scholar 

  15. McCaman, M. W., E. J. Robins: Fluorometric method for the determination of phenylalanine in serum. J. Lab. Clin. Med.59, 885 (1962).

    Google Scholar 

  16. Udenfried, S., J. R. Cooper: Enzymatic conversion of phenylalanine to tyrosine. J. Biol. Chem.194, 503 (1952).

    PubMed  Google Scholar 

  17. McKee, E. E., J. Y. Cheung, D. E. Rannels, H. E. Morgan: Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine J. Biol. Chem.253, 1030 (1978).

    PubMed  Google Scholar 

  18. Wollenberger, A., O. Ristau, G. Schoffa: Eine einfache Technik der extrem schnellen Abkühlung großer Gewebsstücke. Pflügers Arch. ges. Physiol.270, 399 (1960).

    Google Scholar 

  19. Williamson, J. R., B. Corkey: Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods, in Methods in Enzymology (Colowick, S. P., Kaplan, N. O., eds.), vol. 13, p. 439 (New York, 1969, Academic Press).

    Google Scholar 

  20. Bernt, E., H. U. Bergmeyer, H. Möllering: Creatin, in: Methoden der Enzymatischen Analyse (Bergmeyer, H. U., ed.), vol. 2, p. 1724 (Weinheim 1970, Verlag Chemie).

    Google Scholar 

  21. Lamprecht, W., I. Trautschold: Adenosin-5′-triphosphat, Bestimmung mit Hexokinase und Glucose-6-phosphat Dehydrogenase, in Methoden der Enzymatischen Analyse (Bergmeyer, H. U., ed.), vol. 2, p. 2024 (Weinheim 1970, Verlag Chemie).

    Google Scholar 

  22. Gawehn, K.: Anorganisches Phosphat. UV-spektrophotometrische Methode, in Methoden der Enzymatischen Analyse (Bergmeyer, H. U., ed.), vol. 2, p. 2156 (Weinheim 1970, Verlag Chemie).

    Google Scholar 

  23. Bücher, Th., R. Czok, W. Lamprecht, E. Latzko: Pyvuvate, in Methods of Enzymatic Analysis (Bergmeyer, H. U., ed.), p. 253 (New York 1963, Academic Press).

    Google Scholar 

  24. Hohorst, H.-J.: L-(+)-Lactate. Determination with lactic dehydrogenase and DPN, in: Methods of Enzymatic Analysis (Bergmeyer, H. U. ed.), p. 266. (New York 1963, Academic Press).

    Google Scholar 

  25. Seraydarian, K., W. F. H. M. Mommaerts, A. Wallner: The amount and compartmentalization of adenosine diphosphate in muscle. Biochim. Biophys. Acta65, 443 (1962).

    PubMed  Google Scholar 

  26. Kuby, S. A., E. A. Noltmann: in: The Enzymes, 2nd ed., vol. 6, p. 515 (New York 1962, Academic Press).

    Google Scholar 

  27. Jacobus, W. E., G. J. Taylor IV, D. P. Hollis, R. L. Nunnally: Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature256, 756 (1977).

    Google Scholar 

  28. Callaghan, O. H., G. Weber: Kinetic studies on rabbit muscle myokinase. Biochem. J.73, 473 (1959).

    PubMed  Google Scholar 

  29. Olsson, R. A.: Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circulat. Res.26, 301 (1970).

    PubMed  Google Scholar 

  30. Szarkowska, L., M. Klingenberg: On the rate of ubiquinone in mitochondria. Spectrophotometric and chemical measurements of the redox reactions. Biochem. Z.338, 674 (1963).

    PubMed  Google Scholar 

  31. Rannels, D. E., Kao, R., Morgan, H. E.: Effect of insulin on protein turnover in heart muscle. J. Biol. Chem.250 1964 (1975).

    Google Scholar 

  32. Zak, R., M. Rabinowitz: Molecular aspects of cardiac hypertrophy. Ann. Rev. Physiol.41, 539 (1979).

    Google Scholar 

  33. Meerson, F. Z., Pomoinitsky, V. D.: The role of high-energy phosphate compounds in the development of cardiac hypertrophy. J. Mol. Cell-Cardiol4, 571 (1972).

    PubMed  Google Scholar 

  34. Cohen, J., Feldman, R. E., Whitbeck, A. A.: Effects of energy availability on protein synthesis in isolated rat atria. Am. J. Physiol.216, 76 (1969).

    PubMed  Google Scholar 

  35. Zimmer, H.-G., Steinkopff, G., Gerlach, E.: Changes of protein synthesis in the hypertrophying Rat heart. Pflügers. Arch.336, 311 (1972).

    Google Scholar 

  36. Arch, J. R. S., E. A. Newsholme: The control of the metabolism and the hormonal role of adenosine, in Essays in Biochemistry (Campbell, P. N., Aldridge, W. N., eds.) vol. 14, p. 82 (London 1978, Academic Press).

    Google Scholar 

  37. Petersen, M., M. Lesch: Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Circulat. Res.31, 317 (1972).

    PubMed  Google Scholar 

  38. Hjalmarsson, Å., Isaksson, O.: In vitro work load and rat heart metabolism I. Effect on protein synthesis. Acta Physiol. Scand.86 126 (1972).

    PubMed  Google Scholar 

  39. Peuhkurinen, K., T. Takala, K. Hiltunen, I. Hassinen: Effects of intraventricular pressure on the transmural distribution of tissue oxygenation in isolated perfused rat heart. Acta Physiol. Scand. Suppl.473, 29 (1979).

    Google Scholar 

  40. Hassinen, I. E., K. Hiltunen: Respiratory control in isolated perfused rat heart. Role of the equilibrium reaction between the mitochondrial electron carriers and the adenylase system. Biochim. Biophys. Acta408, 319 (1975).

    PubMed  Google Scholar 

  41. Hiltunen, J. K., I. E. Hassinen: Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Biochim. Biophys. Acta440, 377 (1976).

    PubMed  Google Scholar 

  42. Nishiki, K., M. Erecinska, D. F. Wilson: Energy relationship between cytosolic metabolism and mitochondrial respiration in rat heart. Amer. J. Physiol.324, C73 (1978).

    Google Scholar 

  43. Zimmer, H.-G., Steinkopff, G., Ibel, H., Koschine, H.: Is the ATP decline a signal for stimulating protein synthesis in isoproterenol-induced cardiac hypertrophy? J. Mol. Cell. Cardiol.12, 421 (1980).

    PubMed  Google Scholar 

  44. Baird, R. J., R. T. Manktelow, P. A. Shah, F. M. Ameli: Intramyocardial pressure: a study of its regional variations and its relationship to intraventricular pressure. J. Thorac. Cardiovasc. Surg.59, 810 (1970).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 figures and 3 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takala, T. Protein synthesis in the isolated perfused rat heart. Basic Res Cardiol 76, 44–61 (1981). https://doi.org/10.1007/BF01908162

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908162

Key words

Navigation