Skip to main content
Log in

The effects of chronic ethanol treatment on oligomycin sensitive ATPase activity in the guinea pig heart

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In an effort to determine the effect of chronic ethanol ingestion on myocardial oligomycin sensitive ATPase, guinea pigs were fed 15% ethanol instead of drinking water for 34 weeks. Mg2+-ATPase activity of isolated mitochondria was determined in control and alcohol fed guinea pigs at 16, 20, 24 and 34 weeks. To prove a possible higher fragility of the mitochondria from alcohol fed animals, the ATPase activity was also determined in the supernatant after the isolation of mitochondria “100 000 g fraction”. Mg2+-ATPase activity of the isolated mitochondria was time depedent reduced to 56% of the value obtained in the control animals. In the “100 000 g fraction” the ATPase activity, however, started to increase after 8 weeks and after 34 weeks it was about twice as high than in the control group. The findings of this study document a decrease in oligomycin sensitive ATPase activity and an increase in mitochondrial fragility after chronic ethanol ingestion. It supports in the thesis that chronic alcohol intake affects the activity of the intrisinc membrane enzymes by structural derangements of mitochondrial membrane. The changes may play a role in the development of alcoholic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin E (1979) Alcoholic myopathy in heart and skeletal muscle. N Engl J, Med, 301:28–33

    Google Scholar 

  2. Kino M, Thorp KA, Bing OHL, Abelmann WH (1981) Impaired myocardial performance and response to calcium in experimental alcoholic cardiomyopathy. J Mol Cell Cardiol 13:981–989

    PubMed  Google Scholar 

  3. Segel LD, Rendig SV, Mason DT (1979) Left ventricular dysfunction of isolated working rat hearts after chronic alcohol consumption. Cardiovasc Res 13:136–146

    PubMed  Google Scholar 

  4. Noren GR, Staley NA, Einzig S, Mikell FL, Asinger RW (1983) Alcohol-induced congestive cardiomyopathy: an animal model. Cardiovasc. Res 17:81–87

    PubMed  Google Scholar 

  5. Sarma JSM, Ikeda S, Fischer R, Maruyama Y, Weishaar R, Bing RJ (1976) Biochemical and contractile properties of heart muscle after prolonged alcohol administration. J Mol Cell Cardiol 8, pp. 951–972

    PubMed  Google Scholar 

  6. Schultheiß HP, Spiegel M, Bolte HD (1980) Mitochondrialer Energiestoffwechsel des Herzens bei chronischem Äthanolüberkonsum. Z Kardiol 69:189

    Google Scholar 

  7. Bing RJ, Tillmans H, Ikeda S (1974) Metabolic effects of alcohol on the heart. Ann NY Acad 337:243–249

    Google Scholar 

  8. Schultheiß HP, Bolte HD (1982) Störung des Energiestoffwechsels bei dilativen Herzmuskelerkrankungen. Z Kardiol 71:207

    Google Scholar 

  9. Hibbs RJ, Ferrans VJ, Black WC, Weilbaecher DG, Walsh JJ, Burch GE (1965) Alcoholic cardiomyopathy. Amer Heart J 69:766–779

    PubMed  Google Scholar 

  10. Alexander CS, Sekhri KK, Nagasawa HT (1977) Alcoholic cardiomyopathy in mice, electron microscope observations. J Mol Cell Cardiol 9:247–254

    PubMed  Google Scholar 

  11. Schultheiß HP, Bolte HD, Cyran J (1980) Lactate dehydrogenase isoenzyme pattern in myocardial biopsies of patients with congestive cardiomyopathy and with alcoholic cardiomyopathy-clinical and experimental results. In: Myocardial Biopsy — Diagnostic Significance, Bolte HD, Olson EG (eds). Springer Verlag, Berlin/Heidelberg/New York 102–115

    Google Scholar 

  12. Lee AG (1976) Interactions between anesthetics and lipid mixtures. Normal alcoholics. Biochemistry 15, 2448–2454

    Google Scholar 

  13. Hosein EA, Hofmann I, Linder E (1977) The influency of chronic ethanol feeding to rats on the integrity of liver mitochondrial membrane as assessed with the Mg2+ stimulated ATPase enzyme. Arch Biochim Biophys 183:64–72

    Google Scholar 

  14. Thompson JA, Reitz RC (1978) Effects of ethanol ingestion and dietary fat levels on mitochondrial lipids in male and female rats. Lipids 13:540–550

    PubMed  Google Scholar 

  15. Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1981) Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disorder by alcohol. Proc Nat Acad Sci USA, Vol 78:2582–2586

    PubMed  Google Scholar 

  16. Drachev LA, Jasaitis AA, Mikelsaar H, Nemecek IB, Semenova A Yu, Semenova E, Severina II, Skulachev VP (1976) Reconstruction of biological molecular generators of electric current. J Biol Chem 251:7077–7082

    PubMed  Google Scholar 

  17. Roelofsen B, van Deenen, LLM (1973) Lipid requirement of membrane-bound ATPase. Eur J Biochem 40:245–257

    PubMed  Google Scholar 

  18. Ragan CI (1980) The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex. Biochem J 172:539–547

    Google Scholar 

  19. Lenaz G, Parenti-Castelli G, Sechi AM (1975) Lipid-protein interactions in mitochondria. Arch Biochem Biophys 167:72–79

    PubMed  Google Scholar 

  20. Lindenmayer GE, Sordahl LA, Schwartz A (1968) Reevaluation of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circ Res 23:439–450

    PubMed  Google Scholar 

  21. Fiske, CN Subbarow Y (1925) The colorimetric determination of phosphorus. J Org Biol Chem 66 (2) 375

    Google Scholar 

  22. Lowry OH, Rosenbrough NH, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193, p 265

    PubMed  Google Scholar 

  23. French SW, Todoroff T, Norum M (1970) Pathogenesis of ethanol-induced mitochondrial fragility. Fed Proc 29:756–762

    Google Scholar 

  24. Rottenberg H, Robertson DE, Rubin E (1980) The effects of ethanol on the temperature depedence of respiration and ATPase activities of rat liver mitochondria. Lab Investig Vol 42:318–326

    Google Scholar 

  25. Chin JH, Parsons LM, Goldstein DB (1978) Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochim Biophys Acta 513:358–363

    PubMed  Google Scholar 

  26. Moscatelli EA, Demediuk P (1980) Effects of chronic consumption of ethanol and low-thiamin, low-protein diets on the lipid composition of rat whole brain and brain membranes. Biochim Biophys Acta 596:331–337

    PubMed  Google Scholar 

  27. Miceli JN, Ferrel WJ (1973) Effects of ethanol on membrane lipids. Lipids 8:722–727

    PubMed  Google Scholar 

  28. Rubin E, Beatie DS, Toth A, Lieber CS (1972) Structural and functional effects of ethanol in hepatic mitochondria. Fed Proc 31:131–140

    Google Scholar 

  29. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: Methods in Enzymology, Estabrook RW, Pallman ME (eds). Academic Press, New York London, 10:41–47

    Google Scholar 

  30. Weishaar R, Saima JSM, Maruyama Y, Fischer R, Bertuglia S, Bing RJ (1977) Reversibility of mitochondrial and contractile changes in the myocardium after cessation of prolonged ethanol intake. Am J Cardiol 40:556–562

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultheiß, H.P., Spiegel, M. & Bolte, H.D. The effects of chronic ethanol treatment on oligomycin sensitive ATPase activity in the guinea pig heart. Basic Res Cardiol 80, 548–555 (1985). https://doi.org/10.1007/BF01907918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907918

Key words

Navigation