Skip to main content
Log in

The role of fatty acids in ischemic tissue injury: difference between oleic and palmitic acid

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Guinea pig hearts were subjected to low-flow perfusion (0.3 ml/g fresh weight/min) with an oxygen depleted perfusate. Fatty acids (palmitic or oleic acid), added to the perfusate, accelerated in a dose-dependent manner the anoxic decay of creatine phosphate and ATP, impaired lactate production and augmented enzyme release (lactate dehydrogenase, malate dehydrogenase). Palmitic and olcic acid, however, differed distinctly in their deleterious effect, this being greater for oleic acid. After 60 min anoxic low-flow perfusion with 11 mM glucose and 0.2 mM of either fatty acid, complexed in 5∶1 molar relationship to albumin, the creatine phosphate content with palmitate is 39% greater than with oleate, the ATP content 23%, lactate production 15% greater, and release of malate dehydrogenase 24% lower, but the elevated contents of long-chain acyl CoA and acyl carnitine are not significantly different for the two fatty acids. These results accord with earlier experiences on subcellular systems showing that the physicochemical effects of the oleyl residue are more harmful than those of the palmityl residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwartz A (1979) In vitro effects of palmitoyl carnitine on cardiac plasma membrane Na, K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. J Biol Chem 254:12404–12410

    PubMed  Google Scholar 

  2. Bergmeyer HU (1974) Methods of Enzymatic Analysis. Academic Press, New York

    Google Scholar 

  3. Challoner DR, Steinberg D (1966) Oxidative metabolism of myocardium as influenced by fatty acids and epinephrine. Am J Physiol 211:897–902

    Google Scholar 

  4. Corr PB, Gross RW, Sobel BE (1984) Amphiphatic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55:135–154

    PubMed  Google Scholar 

  5. DeLeiris J, Opie LH (1978) Effect of substrates and of coronary artery ligation on mechanical performance and on release of lactate dehydrogenase and creatine phosphokinase in isolated working rat hearts. Cardiovasc Res 12:585–596

    PubMed  Google Scholar 

  6. DeLeiris J, Opie LH, Lubbe WF (1975) Effects of free fatty acid and glucose on enzyme release in experimental myocardial infarction. Nature 253:746–747

    PubMed  Google Scholar 

  7. Finch SAE, Piper HM, Spieckermann PG, Stier A (1985) Anoxia influences the lateral diffusion of a lipid probe in the plasma membrane of isolated cardiac myocytes. Basic Res Cardiol 80 (suppl 1):149–152

    PubMed  Google Scholar 

  8. Glatz JF, Baerwaldt CCF, Veerkamp JH, Kempen HJM (1984) Diurnal variation of cytosolic fatty acid-binding protein content and of palmitate oxidation in rat liver and heart. J Biol Chem 259:4295–4300

    PubMed  Google Scholar 

  9. Glatz JFC, Paulussen RJA, Veerkamp JH (1985) Fatty acid binding proteins from heart. Chem Phys Lipids 38:115–129

    Article  PubMed  Google Scholar 

  10. Idell-Wenger JA, Grotjohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253:4310–4318

    PubMed  Google Scholar 

  11. Kammermeier H, Wein B, Gerards P, Lang U, Wendtland B, Schmitz D, Rose H (1985) Barriers in cardiac substrate supply. Basic Res Cardiol 80 (suppl 2):89–92

    PubMed  Google Scholar 

  12. Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16

    PubMed  Google Scholar 

  13. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Amer Statist Ass 47:583–621

    Google Scholar 

  14. Mjøs OD, Kjekshus JK, Lekven J (1974) Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J Clin Invest 53:1290–1299

    PubMed  Google Scholar 

  15. Morel F, Lauquin G, Lunardi J, Duszynski J, Vignais PV (1974) An appraisal of the functional significance of an inhibitory effect of long chain acyl-CoA on mitochondrial transports. FEBS Lett 39:133–138

    Article  PubMed  Google Scholar 

  16. Ockner RK, Manning JA (1974) Fatty acid-binding protein in small intestine. Identification, isolation and evidence for its role in cellular fatty acid transport. J Clin Invest 54:326–338

    PubMed  Google Scholar 

  17. Owens K, Kennet FF, Weglicki WB (1982) Effects of fatty acid intermediates on Na+−K+-ATPase activity of cardiac sarcolemma. Am J Physiol 242:H456-H461

    PubMed  Google Scholar 

  18. Pande SV, Blanchaer MC (1971) Reversible inhibition of mitochondrial adenosine diphosphate phosphorlyation by long chain acyl coenzyme A esters. J Biol Chem 246:402–411

    PubMed  Google Scholar 

  19. Pearce FJ, Forster J, De Leeuw G, Williamson JR, Tutwiler GF (1979) Inhibition of fatty acid oxidation in normal and hypoxic perfused rat hearts by 2-tetradecylglycidic acid. J Mol Cell Cardiol 12:893–915

    Article  Google Scholar 

  20. Piper HM, Schwartz P, Spahr R, Hütter JF, Spieckermann PG (1984) Early enzyme release from myocardial cells is not due to irreversible cell damage. J Mol Cell Cardiol 16:385–388

    PubMed  Google Scholar 

  21. Piper HM, Sezer O, Schwartz P, Hütter JF, Schweickhardt C, Spieckermann PG (1984) Acylcarnitine effects on isolated cardiac mitochondria and erythrocytes. Basic Res Cardiol 79:186–198

    PubMed  Google Scholar 

  22. Piper HM, Sezer O, Schwartz P, Hütter JF, Spieckermann PG (1983) Fatty acid-membrane interactions in isolated cardiac mitochondria and erythrocytes. Biochim Biophys Acta 752:193–203

    Google Scholar 

  23. Prinzen FW, Van der Vusse GJ, Arts T, Roemen THM, Coumans WA, Reneman RS (1984) Accumulation of nonesterified fatty acids in ischemic canine myocardium. Am J Physiol 247:H264-H272

    PubMed  Google Scholar 

  24. Rovetto MJ, Lamberton WF, Neely JR (1975) Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37:742–751

    PubMed  Google Scholar 

  25. Spector AA, Brennan DE (1972) Effect of free fatty acid structure on binding to rat liver mitochondria. Biochim Biophys Acta 260:433–438

    PubMed  Google Scholar 

  26. Spector AA, Fletcher JE (1978) Transport of fatty acids in circulation. In: Dietschy JM, Gotto jr AM, Ontko JA (eds) Disturbances in Lipid and Lipoprotein Metabolism. American Physiological Society, Bethesda, pp 229–249

    Google Scholar 

  27. Spector AA, Fletcher JE, Ashbrook JD (1971) Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry 10:3229–3232

    Article  PubMed  Google Scholar 

  28. Van der Vusse GJ, Reneman RS (1984) The myocardial non-esterified fatty acid controversy. J Mol Cell Cardiol 16:677–682

    PubMed  Google Scholar 

  29. Van der Vusse GJ, Roemen THM, Flameng W, Reneman R (1983) Serum-myocardial gradients of non-esterified fatty acids. Biochim Biophys Acta 752:361–370

    PubMed  Google Scholar 

  30. Vik-Mo H, Mjøs OD (1981) Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol 48:361–365

    Article  PubMed  Google Scholar 

  31. Wojtczak L (1976) Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport and energy-coupling processes. J Bioenerg Biomembr 8:293–311

    PubMed  Google Scholar 

  32. Wosilait WD, Soler-Argilaga C, Nagy P (1976) A theoretical analysis of the binding of palmitate by human serum albumin. Biochem Biophys Res Commun 71:419–426

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piper, H.M., Das, A. The role of fatty acids in ischemic tissue injury: difference between oleic and palmitic acid. Basic Res Cardiol 81, 373–383 (1986). https://doi.org/10.1007/BF01907458

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907458

Key words

Navigation