Skip to main content
Log in

Tissue protection by adrenergic blockade in the calcium paradox?

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In a graded model of the calcium paradox phenomenon (minimal and total) the presence of the β-blocker propranolol (5·10−6M) in the perfusion media (10 min prior to, during and 5 min following calcium-free perfusion) has no effect upon tissue injury. Propranolol pretreatment (three days prior to the experiments) significantly reduced the myocardial enzyme release during calcium repletion in the minimal calcium paradox. The presence of the α1 prazosin (1·10−7M) in the perfusion media (10 min prior to, during and 5 min following calcium-free perfusion) afforded no protective effects. It is concluded that the release of endogenous catecholamines may not be an important factor contributing to myocardial injury in the calcium paradox, and that consequently β- or α1-adrenergic blockade has little if any protective properties in this form of myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alto LE, Dhalla NS (1979) Myocardial cation contents during induction of calcium paradox. Am J Physiol 237:H713-H719

    PubMed  Google Scholar 

  2. Ashraf M, Onda M, Benedict J, Hirohata Y (1981) Surface ultrastructural features of isolated perfused rat hearts during calcium paradox. Scan Electron Microse III:109–114

    Google Scholar 

  3. Boink ABTJ, Ruigrok TJC, Maas AHJ, Zimmerman ANE (1976) Changes in high energy phosphate compounds of isolated rat hearts during Ca2+-free perfusion and reperfusion with Ca2+. J Mol cell Cardiol 8:973–979

    PubMed  Google Scholar 

  4. Daniell HB, Walle T, Gaffney TE, Webb JG (1979) Stimulation-induced release of propranolol and norepinephrine from adrenergic neurons. J Pharmacol Exp Ther 3:354–359

    Google Scholar 

  5. Frank JS, Langer GA, Nudd LM, Seraydarian K (1977) The myocardial cell surface, its histochemistry and the effect of sialic acid and calcium removal in its structure and cellular ionic exchange. Circ Res 41:702–714

    PubMed  Google Scholar 

  6. Greve G, Rotevatn S, Sætersdal T, Øksendal AN, Jynge P (1985) Ultrastructural studies of intercalated disc separations in the rat heart during the calcium paradox. Res Exp Med 185:195–206

    Google Scholar 

  7. Hearse DJ, Garlick PB, Humphrey SM, Shillingford JP (1978) The effect of drugs on enzyme release from the hypoxic myocardium. Eur J Cardiol 7:421–436

    PubMed  Google Scholar 

  8. Hearse DJ, Humphrey SM, Boink ABTJ, Ruigrok TJC (1978) The calcium paradox: metabolic, electrophysiological, contractile and ultrastructural characteristics in four species. Eur J Cardiol 7:241–256

    PubMed  Google Scholar 

  9. Krebs HA, Hensclcit K (1932) Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Scyler's Physiol Chem 210:33–66

    Google Scholar 

  10. Langendorff O (1895) Untersuchungen am überlebenden Säugetierherzen. Pflügers Arch 61:291–332

    Google Scholar 

  11. Meno H, Kanaide H, Nakamura M (1984) Effects of diltiazem on the calcium paradox in isolated rat hearts. J Pharmacol Exp Ther 228:220–228

    PubMed  Google Scholar 

  12. Momose M, Ohno O, Ogawa K, Ito T, Hashimoto H, Satake T (1986) Myocardial norepinephrine and cyclic AMP content during calcium free perfusion., J Mol Cell Cardiol 18 (suppl 1):186

    Google Scholar 

  13. Nayler WG, Gordon M, Stephens DJ, Sturrock J (1985) The protective effect of prazosin on the ischaemic and reperfused myocardium. J Mol Cell Cardiol 17:685–699

    PubMed  Google Scholar 

  14. Nayler WG, Perry SE, Daly MJ (1984) Calcium, sodium and the calcium paradox. Circ Res 55:227–237

    PubMed  Google Scholar 

  15. Ohhara H, Kanaide H, Nakamura M (1982) A protective effect of verapamil on the calcium paradox in the isolated perfused rat heart. J Mol Cell Cardiol 14:13–20

    Google Scholar 

  16. Opic LH (1982) Role of cyclic nucleotides in heart metabolism. Cardiovasc Res 16:483–507

    PubMed  Google Scholar 

  17. Osnes J-B, Refsum H, Skomedal T, Øye I (1978) Qualitative differences between β-adrenergic and α-adrenergic inotropic effects in rat muscle. Acta Pharmacol Toxicol 42:235–247

    Google Scholar 

  18. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    PubMed  Google Scholar 

  19. Rotevatn S, Jodalen H, Øgreid D, Øksendal AN, Jynge P (1986) Myocardial cAMP and calcium levels in the calcium paradox. Basic Res Cardiol 81:430–435

    PubMed  Google Scholar 

  20. Ruigrok TJC, Burgersdijk FJA, Zimmerman ANE (1975) The calcium paradox: a reaffirmation. Eur J Cardiol 3:59–63

    PubMed  Google Scholar 

  21. Sellevold OFM, Jynge P, Aarstad K (1986) High performance liquid chromatography: A rapid isocratic method for determination of creatine compounds and adenine nucleotides im myocardial tissue. J Mol Cell cardiol 18:517–527

    PubMed  Google Scholar 

  22. Skomedal T, Osnes J-B, Øye I (1980) Competitive blockade of α-adrenergic receptors in rat heart by prazosin. Acta Pharmacol Toxicol 47:217–222

    Google Scholar 

  23. Sperelakis N (1984) Cyclic AMP and phosphorylation in regulation of Ca++ influx, into myocardial cells and blockade by calcium antagonistic drugs. Am Heart J 107:347–357

    PubMed  Google Scholar 

  24. Waldenstrøm AP, Hjalmarson ÅC (1977) Factors modifying ischemic injury in the isolated rat heart. Acta Med Scand 201:533–538

    PubMed  Google Scholar 

  25. Waldenstrøm AP, Hjalmarson ÅC, Thornell L (1978) A possible role of noradrenaline in the development of myocardial infarction. Am Heart J 95:43–51

    PubMed  Google Scholar 

  26. Yates JC, Dhalla NS (1975) Structural and functional changes associated with failure and recovery of hearts after perfusion with Ca2+-free medium. J Mol Cell Cardiol 7:91–103

    PubMed  Google Scholar 

  27. Zimmerman ANE, Hülsmann WC (1966) Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature 211:646–647

    PubMed  Google Scholar 

  28. Zimmerman ANE, Deams W, Hülsmann WC, Snijder J, Wisse E, Durrer D (1967) Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium-containing solutions (calcium paradox). Cardiovasc Res 1:201–209

    Google Scholar 

  29. Øksendal AN, Jynge P, Sellevold OFM, Rotevatn S Sætersdal T (1985) The calcium paradox phenomenon: a flow rat and volume response study of calcium-free perfusion. J Mol Cell Cardiol 17:959–972

    PubMed  Google Scholar 

  30. Øksendal AN, Jynge P (1986) Protection by verapamil in the calcium paradox: dependence on micromolar calcium Cardiovasc Res 20:845–852

    PubMed  Google Scholar 

  31. Øksendal AN, Jynge P (1986) Myocardial protection by micromolar manganese in the calcium paradox and additive effects of verapamil. Basic Res Cardiol 81:581–593

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Øksendal, A.N., Jynge, P. Tissue protection by adrenergic blockade in the calcium paradox?. Basic Res Cardiol 82, 138–145 (1987). https://doi.org/10.1007/BF01907061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907061

Key words

Navigation