Skip to main content
Log in

Hemodynamic changes and renal plasma flow in early heart failure: implications for renin, aldosterone, norepinephrine, atrial natriuretic peptide and prostacyclin

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Vasoconstrictory and vasodilatory hormone systems may be important in the regulation of peripheral vascular resistance and renal hemodynamics in the carly phase of heart failure. The activity of the renin-angiotensin-aldosterone system (RAAS), the sympathetic nervous activity, and, as possible counterregulating systems, the activity of prostacyclin and atrial natriuretic peptide (ANP) were studied in 6 conscious dogs during the first 4 days of congestive heart failure in relation to hemodynamic changes and renal plasma flow. Congestive heart failure was induced by rapid right ventricular pacing, which caused a considerable decrease of cardiac output (−38%; p<0.05), oxygen saturation of the mixed venous blood (−13%; p<0.05), and mean arterial pressure (−24 mm Hg; p<0.05) on the 4th day. Mean pulmonary arterial pressure and mean pulmonary capillary wedge pressure increased (+4 mm Hg; p<0.05 and +7 mm Hg, respectively; p<0.05). Renal plasma flow was slightly reduced (N.S.), renal vascular resistance did not change. Peripheral vascular resistance showed a significant increase only on the 1st day. Sympathetic nervous activity was stimulated (from 175±31 pg/ml to 391±100 pg/ml; p<0.05), while plasma renin concentration was significantly suppressed on the 4th day (from 3.3±0.4 ngAI/ml/h to 1.9±0.5 ngAI/ml/h; p<0.05), and plasma aldosterone levels were decreased (from 108±12 pg/ml to 76±12 pg/ml; p<0.05). ANP increased 3-fold (p<0.05) and 6-keto-prostaglandin F1 alpha increased in 4 out of 6 dogs. Since ANP is known to inhibit renin release and aldosteronc production, the suppressed RAAS may be an effect of the highly elevated plasma levels of ANP in the early phase of heart failure. The depressor systems such as ANP and prostacyclin may balance the stimulated sympathetic system, resulting in no change of renal blood flow and renal vascular resistance and preventing a considerable increase of peripheral vascular resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JV, Struthers AD, Payne NN, Bloom SR (1986) Atrial natriurctic peptide inhibits the aldosterone response to angiotensin II in man. Clin Sci 70:507–512

    PubMed  Google Scholar 

  2. Baer PG, Naval LG, Guyton AC (1970) Renal autoregulation, filtration rate, and electrolyte excretion during vasodilation. Am J Physiol 219:619–625

    PubMed  Google Scholar 

  3. Ball SG, Tree M, Morton JJ, Inglis GC, Fraser R (1981) Circulation dopamine: its effect on the plasma concentrations of catecholamines, renin, angiotensin, aldostcrone and vasopressin in the conscious dog. Clin Sci 61:417–422

    PubMed  Google Scholar 

  4. Burnett JC, Granger JP, Opgenorth TJ (1984) Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16):F863-F866

    PubMed  Google Scholar 

  5. Brown JJ, Davies DL, Johnson VW, Lever AF, Robertson JIS (1979) Renin relationships in congestive heart failure, treated or untreated. Am Heart J 80:329–342

    Google Scholar 

  6. Chartier L, Schiffrin E, Thibault G (1984) Effect of atrial natriuretic factor (ANF)-related peptides on aldosterone secretion by adrenal glomerulosa cells: critical role of the intramolecular disulfide bond. Biophys Res Commun 122:171–174

    Google Scholar 

  7. Cooper CL, Malik KU (1985) Mechanism of action of vasoactive hormones on prostaglandin synthesis in the kidney. In: Hayaishi O, Yamamoto S (eds) Advances in Prostaglandin, Thromboxane, and Leucotriene Research. Raven Press, New York, vol 15, pp 437–439

    Google Scholar 

  8. Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline, and dopamine within the femtomole range. Life Sci 19:1161–1173

    PubMed  Google Scholar 

  9. Dzau VJ, Packer M, Lilly LS, Swartz SL, Hollenberg NK, Williams GH (1984) Prostaglandins in severe congestive heart failure. N Engl J Med 310:347–352

    PubMed  Google Scholar 

  10. Dzau VJ, Colucci WS, Hollenberg NK, Williams GH (1981) Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation 63:645–651

    PubMed  Google Scholar 

  11. Goodfriend TL, Elliot ME, Atlas SA (1984) Action of synthetic aterial natriuretic factor on bovine adrenal glomerulosa. Life Sci. 35:1675–1682

    PubMed  Google Scholar 

  12. Guyton AC (1981) The relationship of cardiac output and aterial pressure control. Circulation 64:1079–1088

    PubMed  Google Scholar 

  13. Johnson MD, Barger AC (1981) Circulating catecholamines in control of renal electrolyte and water excretion. Am J Physiol 240 (Renal Fluid Electrolyte Physiol 9): F192-F199

    PubMed  Google Scholar 

  14. Kleinert HD, Maack T, Atlas SA, Januszewicz A, Sealey JE, Laragh JH (1984) Atrial natriuretic factor inhibits angitensin-, norepinephrine-, and potassium-induced vascular contractility. Hypertension 6:Suppl I:I—143—147

    Google Scholar 

  15. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN (1982) Activity of sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their regulation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 49:1649–1666

    Google Scholar 

  16. Maack T, Marion DN, Camargo MJF et al (1984) Effects of auriculin (atrial natriuretic factor) on blood pressure, renal function, and the renin aldosterone system in dogs. Am J Med 77:1069–1075

    PubMed  Google Scholar 

  17. Morris BJ, Davis JO, Zatzman ML, Williams GM (1977) The renin-angiotensin-aldosterone-system in rabbits with congestive heart failure produced by aortic constriction. Circ Res 40:275–282

    PubMed  Google Scholar 

  18. Oliver JA, Sciacca RR, Pinto J, Cannon PJ (1981) Participation of the prostaglandins in the control of renal blood flow during acute reduction of cardiac output in the dog. J Clin Invest 67:229–237

    PubMed  Google Scholar 

  19. Osol G, Halpern W, Tesfamariam B, Nakayama K, Weinberg D (1986) Synthetic atrial natriuretic factor does not dilate resistance-sized arteries. Hypertension 8:606–610

    PubMed  Google Scholar 

  20. Riegger AJG, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci. 62:465–469

    PubMed  Google Scholar 

  21. Riegger AJG, Liebau G, Holzschuh M, Witkowski D, Steilner H, Kochsiek K (1984) Role of the renin-angiotensin system in the development of congestive heart failure in the dog as assessed by chronic converting-enzyme blockade. Am J Cardiol 53:614–618

    PubMed  Google Scholar 

  22. Scriven TA, Burnett JC (1985) Effects of synthetic atrial natriurctic peptide on renal function and renin release in acute experimental heart failure. Circulation 72:892–897

    PubMed  Google Scholar 

  23. Sweet CS, Ludden CT, Frederick CM, Ribeiro LGT (1984) Hemodynamic effects of angiotensin and renin inhibition in dogs with acute left ventricular failure. Am J Med 77:(2A)7–12

    Google Scholar 

  24. Villarrel D, Freeman RH, Davis JO, Verburg KM, Vari RC (1986) Renal mechanisms for suppression of renin secretion by atrial natriuretic factor. Hypertension 8, Suppl II:II—28—35

    Google Scholar 

  25. Volpe M, Odell G, Kleinert HD et al (1985) Effect of atrial natriuretic factor on blood pressure, renin, and aldosterone in Goldblatt hypertension. Hypertension 7, Suppl I:I—43—48

    Google Scholar 

  26. Watkins L, Burton JA, Haber E, Cant JR, Smith FW, Barger AC et al (1976) The renin-angiotensin-aldosterone system in congestive heart failure in conscious dogs. J Clin Invest 57:1606–1617

    PubMed  Google Scholar 

  27. Winquist RJ, Faison EP, Waldmann SA, Schwartz K, Murad F, Rapoport RM (1984) Atrial natriuretic factor elicits and endothelium-independent relaxation an activates particulate guanylate cyclase in vascular smooth muscle. Proc Nat Acad Sci USA 81:7661–7664

    PubMed  Google Scholar 

  28. Yui Y, Nakajima H, Kawai C, Murakami T (1984) Prostacyclin therapy in patients with congestive heart failure. Am J Cardiol 50:320–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmer, S.R., Riegger, A.J.G., Notheis, W.F. et al. Hemodynamic changes and renal plasma flow in early heart failure: implications for renin, aldosterone, norepinephrine, atrial natriuretic peptide and prostacyclin. Basic Res Cardiol 82, 101–108 (1987). https://doi.org/10.1007/BF01907058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907058

Key words

Navigation