Skip to main content
Log in

Myocardial amino acid metabolism in patients with chronic ischemic heart disease

Myokardialer Aminosäuren-Stoffwechsel bei Patienten mit chronisch-ischämischen Herzleiden

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In nine patients with ischemic heart disease the authors investigated the arterio-coronary venous difference of free amino acids in serum at rest and during pacing. At rest aspartate was the only amino acid with a marked positive arterio-coronary venous difference. At the peak of pacing, in addition to aspartate, there is a significant positive arterio-coronary venous difference in glutamate, leucine and isoleucine and a significantly negative difference in cystine-cysteine and glutamine with asparagine. When expressed in per cent of the arterial level, the negative difference in alanine is also significant. Among the mutual correlations of arterio-coronary venous differences the negative correlation between alanine and lactate is most significant, which suggests that under normal conditions pyruvate is transformed rather to alanine, while in ischemia lactate is formed from pyruvate, and released from the heart muscle. There is also a positive correlation between alanine and glutamine and between leucine, isoleucine and glutamate.

On the other hand, cystine-cysteine correlates very significantly but inversely with leucine, isoleucine and glutamate.

The arterio-coronary venous difference of aspartate, though significantly positive, does not correlate with any other amino acid. The arterio-coronary vernous differences of ammonia and uric acid correlate inversely, whereby uric acid, contrary to ammonia, is practically not released from the heart muscle.

Zusammenfassung

Die Autoren untersuchten bei 9 Patienten mit ischämischen Herzleiden die arterio-koronarvenöse Differenz von freien Fettsäuren im Serum unter Ruhebedingungen und während künstlichem Schrittmacherantrieb. Bei körperlicher Ruhe war Aspartat die einzige Aminosäure mit einer ausgesprochenen positiven arterio-koronarvenösen Differenz. Auf dem Höhepunkt des Schrittmacherantriebs war zusätzlich zum Aspartat eine positive arteriovenöse Differenz für Glutamat, Leucin und Isoleucin und eine signifikant negative Differenz für Cystin-Cystein und Glutamin zusammen mit Asparagin zu verzeichnen. Ausgedrückt als Prozentsatz des arteriellen Spiegels war die negative Differenz auch bei Alanin signifikant. Bei wechselseitiger Korrelation der arteriovenösen Differenzen war die negative Beziehung zwischen Alanin und Lactat am eindeutigsten, was dafür spricht, daß unter normalen Bedingungen Pyruvat eher zu Alanin umgeformt wird, während im Zustand der Ischämie Lactat aus Pyruvat gebildet und vom Herzmuskel freigesetzt wird. Auch ergibt sich eine positive Korrelation zwischen Alanin und Glutamat und zwischen Leucin, Isoleucin und Glutamat. Andererseits korreliert Cystin-Cystein hoch signifikant, aber invers mit Leucin, Isoleucin und Glutamat.

Die arterio-koronarvenöse Differenz von Aspartat, obwohl signifikant positiv, korreliert nicht mit irgendeiner anderen Aminosäure. Die arteriovenösen Differenzen von Ammoniak und Harnsäure korrelieren invers, wobei Harnsäure im Gegensatz zu Ammoniak praktisch nicht aus dem Herzmuskel freigesetzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berne, R. M., R. Rubio: Adenine nucleotide metabolism in the heart. Circulat. Res.35, Suppl. III, 109–120 (1974).

    PubMed  Google Scholar 

  2. Böttger, I., G. R. Faloona, R. H. Unger: The effect of intensive physical exercise on pancreatic glucagon secretion. Diabetes20, abstract p. 339 (1971).

    Google Scholar 

  3. Brodan, V., J. Fabián, J. Pechar, D. Grafnetter: Myocardial metabolism during pacing in patients with significant stenotic atherosclerosis of coronary arteries (in Czech). Čas. Lék. čes.114, 1415–1419 (1975).

    Google Scholar 

  4. Brodan, V., J. Fabián, J. Pechar, D. Tomková: The metabolism of ammonia in the ischaemic myocardium at rest and during pacing (in Czech). Čas. Lék. čes.114, 31–32 (1975).

    Google Scholar 

  5. Brodan, V., E. Kuhn, J. Pechar, Z. Placer, Z. Slabochová: Influence of sodium glutamate on metabolism during physical exercise. Nutr. Rep. Intern.9, 223–232 (1974).

    Google Scholar 

  6. Brodanová, M., V. Brodan, M. Anděl, J. Pechar, D. Tomková: The influence of tolbutamide and glucagon on free plasma amino acids in cirrhotics. Proceedings of the Czechoslovak Physiological Society, Prague, February 1–3 (1977).

  7. Buse, M. G., S. S. Reid: Leucine: a possible regulator of protein metabolism in muscle. Clin. Res.23, 412 A (1975).

    Google Scholar 

  8. Cahill, G. F. Jr.: Protein and amino acid metabolism in man. Circulat. Res.38, Suppl.I, 109–114 (1976).

    PubMed  Google Scholar 

  9. Carlsten, A., B. Hallgren, R. Jagenburg, A. Svanborg, L. Werkö: Myocardial metabolism of glucose, lactic acid, amino acids, and fatty acids in healthy individuals at rest and at different work loads. Scand. J. clin. Invest.13, 418–428 (1964).

    Google Scholar 

  10. Dole, V. P.: Relationship between non esterified fatty acid and metabolism of glucose. J. clin. Invest.35, 150–154 (1956).

    PubMed  Google Scholar 

  11. Fabián, J., V. Brodan, A. Belán: Pacing test in patients with ischaemic heart disease. Clinical, hemodynamic and metabolical picture of acute induced myocardial ischaemia. Rev. Czech. Med.22, 10–22 (1976).

    PubMed  Google Scholar 

  12. Felig, P.: The glucose-alanine cycle. Metab. Clin. Exp.22, 179–207 (1973).

    PubMed  Google Scholar 

  13. Felig, P., E. Pozefsky, E. Marliss, G. F. Cahill: Alanine: key role in gluconeogenesis. Science (Wash. D.C.)167, 1003–1004 (1970).

    Google Scholar 

  14. Felig, P., J. Wahren: Amino acid metabolism in exercising man. J. Clin. Invest.50, 2703–2714 (1971).

    PubMed  Google Scholar 

  15. Gailis, L., E. Benmouyal: Endogenous alanine, glutamate, aspartate and glutamine in the perfused guinea-pig heart: Effects of substrates and cardioactive agents. Can. J. Biochem.51, 11–20 (1973).

    PubMed  Google Scholar 

  16. Gudbjarnason, S.: Use of glycolytic metabolism in the assessment of hypoxia in human hearts. Cardiology57, 35–46 (1972).

    PubMed  Google Scholar 

  17. Himms-Hagen, J.: Adrenergic receptors for metabolic responses in adipose tissue. Fed. Proc.29, 1388–1401 (1970).

    PubMed  Google Scholar 

  18. Himwich, H. E., W. Goldfarb, L. H. Nahum: Changes of carbohydrate metabolism of the heart following coronary occlusion. Amer. J. Physiol.109, 403 (1934).

    Google Scholar 

  19. Hořejší, J., B. Slavík: Basic biochemical investigation in medicine (in Czech), SZdN, Prague (1953).

    Google Scholar 

  20. Kato, T.: Myocardial amino-nitrogen metabolism with special reference to ammonia metabolism. Jap. Circ. J.32, 1401–1416 (1968).

    PubMed  Google Scholar 

  21. Kübler, W.: Myocardial energy metabolism in patients with ischemic heart disease. Basic Res. Cardiol.69, 105–112 (1974).

    PubMed  Google Scholar 

  22. Lowenstein, J. M.: Ammonia production in the muscle and in other tissues: Purine nucleotide cycle. Physiol. Rev.52, 382–414 (1972).

    Google Scholar 

  23. Marliss, E. B., T. T. Aoki, T. Pozefsky, A. S. Most, G. F. Cahill: Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J. Clin. Invest.50, 814–817 (1971).

    PubMed  Google Scholar 

  24. Mudge, G. H., R. M. Mills, H. Taegtmeyer, R. Gorlin, M. Lesch: Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J. clin. Invest.15, 1185–1192 (1976).

    Google Scholar 

  25. Opie, L. H.: Metabolism of the heart in health and disease. Part I. Amer. Heart J.76, 685–698 (1968).

    Google Scholar 

  26. Owen, T. G., P. W. Hochachka: Purification and properties of dolphin muscle aspartate and alanine transaminases and their possible roles in the energy metabolism of diving mammals. Biochem. J.143, 541–553 (1974).

    PubMed  Google Scholar 

  27. Pozefsky, T., P. Felig, J. D. Tobin, J. S. Soeldner, G. F. Cahill: Amino acid balance across tissues of the forearm in postabsorptive man. J. Clin. Invest.48, 2273–2282 (1969).

    PubMed  Google Scholar 

  28. Ronca-Testoni, S., A. Raggi, C. Ronca: Muscle AMP aminohydrolyse. Biochim. biophys. Acta (Amst.)198, 101 (1970).

    Google Scholar 

  29. Randle, P. J.: Regulation of glycolysis and pyruvate oxidation in cardiac muscle. Circulat. Res.38, Suppl. I, 8–15 (1976).

    Google Scholar 

  30. Smirnov, V. N., G. F. Asafov, N. M. Cherpachenko, C. B. Chernousova, V. T. Mozchechkov, V. I. Krivov, A. Ovchinnikov, V. G. Merimsom, V. G. Rozynov, M. N. Chumachenko: Ammonia neutralisation and urea synthesis in cardiac muscle. Circulat. Res.35, Suppl. III, 58–69 (1974).

    Google Scholar 

  31. Watanabe, T.: Significance of ammonia in myocardial metabolism. Jap. Circ. J.32, 1811–1814 (1968).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodan, V., Fabián, J., Anděl, M. et al. Myocardial amino acid metabolism in patients with chronic ischemic heart disease. Basic Res Cardiol 73, 160–170 (1978). https://doi.org/10.1007/BF01906751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906751

Keywords

Navigation