Skip to main content
Log in

Noradrenaline-Induced Restoration of Acidosis-Inhibited Neurogenic Vasoreactivity at Using Different Electrical Stimulation Frequencies

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Experiments using segments of the tail artery from young rats addressed the effects of noradrenaline on the neurogenic vasoconstrictor reactions of these segments evoked by stimulation with an electric field of frequencies 3, 5, 10, and 40 Hz in controls and after decreasing the solution pH from 7.4 to 6.6. Acidosis produced significant decreases in this reaction at all electrical stimulation frequencies. Noradrenaline restored neurogenic vasoconstriction after it had decreased spontaneously or after the significantly greater drop induced by acidosis. On the background of acidosis, the potentiating action of noradrenaline on neurogenic vasoconstriction was more significant than at normal pH and was more apparent at higher electrical stimulation frequencies and noradrenaline concentrations. This may be of value for redistributing blood flow to vitally important areas during muscle work, which is accompanied by acidosis, increased spike frequencies in sympathetic nerves, and increases in noradrenaline concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Karachentseva, V. N. Yartsev, and D. P. Dvoretskii, “Noradrenaline facilitates the restoration of decreased neurogenic vasoreactivity,” Ros. Fiziol. Zh., 94, No. 1, 37–44 (2008).

    CAS  Google Scholar 

  2. O. V. Karachentseva, V. N. Yartsev, D. P. Dvoretskii, and I. V. Zhdanova, “Effects of melatonin on neurogenic vasoreactivity: conditions for the formation and modulation of vascular responses,” Ros. Fiziol. Zh., 89, No. 2, 146–153 (2003).

    CAS  Google Scholar 

  3. V. N. Yartsev and O. V. Karachentseva, “Contractile activity of isolated mesenteric artery perfused by solutions with different pH values,” Ros. Fiziol. Zh., 82, No. 8–9, 28–36 (1996).

    CAS  Google Scholar 

  4. V. N. Yartsev, O. V. Karachentseva, and D. P. Dvoretskii, “Effects of exogenous noradrenaline and melatonin on neurogenic vasoreactivity,” Ros. Fiziol. Zh., 90, No. 11, 1363–1369 (2004).

    Google Scholar 

  5. J. Akinaga, V. Lima, L. R. Kiguti, et al., “Differential phosphorylation, desensitization, and internalization of α1A-adrenoceptors activated by norepinephrine and oxymetazoline,” Mol. Pharmacol., 83, No. 4, 870–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. J. Atkinson, N. Boillat, A. K. Founda, et al., “Noradrenaline inhibits vasoconstriction induced by electrical stimulation,” Gen. Pharmacol., 18, No. 3, 219–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. V. Borovsky, M. Herman, G. Dunphy, et al., “CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves,” Am. J. Physiol, 274, No. 1, Part 2, R19–R22 (1998).

  8. R. Boushel, “Muscle metaboreflex control of the circulation during exercise,” Acta Physiol. (Oxf.), 199, No. 4, 367–383 (2010).

    Article  CAS  Google Scholar 

  9. J. A. Brock, M. Bridgewater, and T. C. Cunnane, “Beta-adrenoceptor mediated facilitation of noradrenaline and adenosine 5’-triphosphate release from sympathetic nerves supplying the rat tail-artery,” Br. J. Pharmacol., 120, No. 5, 769–776 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. A. Brock and J. H. Tan, “Selective modulation of noradrenaline release by alpha 2-adrenoceptor blockade in the rat-tail artery in vitro,” Br. J. Pharmacol., 142, No. 2, 267–274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. V. K. Capellin, C. B. Restini, L. M. Bendhack, et al., “The effect of extracellular pH changes on intracellular pH and nitric oxide concentration in endothelial and smooth muscle cells from rat aorta,” PLoS One, 8, No. 3, e62887 (2013).

  12. A. C. Celotto, V. K. Capellini, C. F. Baldo, et al., “Effects of acid- base imbalance on vascular reactivity,” Braz. J. Med. Biol. Res., 41, No. 6, 439–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. L. Q. Chen and A. P. Shepherd, “Role of H+ and alpha 2-receptors in escape from sympathetic vasoconstriction,” Am. J. Physiol., 261, No. 2, Part 2, H868–H873 (1991).

  14. W. S. Chung, J. M. Farley, A. Swenson, et al., “Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells,” Am. J. Physiol. Cell Physiol., 298, No. 5, C1198–C1208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. F. Dabertrand, M. T. Nelson, and J. E. Brayden, “Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels,” Circ. Res., 110, No. 2, 285–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. C. J. Daly, R. A. Ross, J. Whyte, et al., “Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and ‘cannabinoid-like’ receptors in small arteries,” Br. J. Pharmacol., 159, No. 4, 787–796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. R. Davis and M. B. Wood, “The effects of acidosis and alkalosis on long bone vascular resistance,” J. Orthop. Res., 11, No. 6, 834–839 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. D. P. Dvoretsky, V. N. Yartsev, O. V. Karachenteva, and M. P. Granstrem, “Changes in reactivity of rat arteries subjected to dynamic stretch,” Acta Physiol. Scand., 169, No. 1, 13–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. K. Haniuda, T. Nakane, and S. Chiba, “Different contributions of ATP and noradrenaline to neurotransmission in the isolated canine intermediate auricular artery,” Eur. J. Pharmacol., 333, No. 2–3, 163–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. A. Hessellund, C. Aalkjaer, and T. Bek, “Effect of acidosis on isolated porcine retinal vessels,” Curr. Eye Res., 31, No. 5, 427–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. S. J. Ives, R. H. Andtbacka, R. D. Noyes, et al., “α1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH,” Exp. Physiol., 98, No. 1, 256–267 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. F. Jantschak, A. M. Popp, R. A. Hofmann, et al., “Post-junctional α2C-adrenoceptors mediate vasoconstriction in rat tail artery: influence of precontraction and temperature on vasoreactivity,” Naunyn Schmiedebergs Arch. Pharmacol., 382, No. 5–6, 487–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. C. D. Johnson, A. M. Coney, and J. M. Marshall, “Roles of norepinephrine and ATP in sympathetically evoked vasoconstriction in rat tail and hindlimb in vivo,” Am. J. Physiol. Heart Circ. Physiol., 281, No. 6, H2432–H2440 (2001).

    CAS  PubMed  Google Scholar 

  24. S. Y. Kamikihara, A. Mueller, V. Lima, et al., “Differential distribution of functional alpha1-adrenergic receptor subtypes along the rat tail artery,” J. Pharmacol. Exp. Ther., 314, No. 2, 753–761 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. H. Kawasaki, S. Eguchi, S. Miyashita, et al., “Proton acts as a neurotransmitter for nicotine-induced adrenergic and calcitonin gene-related peptide-containing nerve-mediated vasodilation in the rat mesenteric artery,” J. Pharmacol. Exp. Ther., 330, No. 3, 745–755 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. H. A. Kluess, J. B. Buckwalter, J. J. Hamann, and P. S. Clifford, “Acidosis attenuates P2X purinergic vasoconstriction in skeletal muscle arteries,” Am. J. Physiol. Heart Circ. Physiol., 288, No. 1, H129–H132 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. K. Krajnak, R. G. Dong, S. Flavahan, et al., “Acute vibration increases alpha2C-adrenergic smooth muscle constriction and alters ther mosensitivity of cutaneous arteries,” J. Appl. Physiol., 100, No. 4, 1230–1237 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. L. H. Lin, J. Jin, M. B. Nashelsky, and W. T. Talman, “Acid-sensing ion channel 1 and nitric oxide synthase are in adjacent layers in the wall of rat and human cerebral arteries,” J. Chem. Neuroanat., 61–62, 161–168 (2014).

    Article  PubMed  Google Scholar 

  29. J. C. McGrath, “Localization of α-adrenoceptors: J. R. Vane Medal Lecture,” Br. J. Pharmacol., 172, No. 5, 1179–1194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. Medina, G. Segarra, M. Peiro, et al., “Influence of nitric oxide on neurogenic contraction and relaxation of the human gastroepiploic artery,” Am. J. Hypertens., 16, No. 1, 28–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. S. H. Nelson, O. S. Steinsland, R. L. Johnson, et al., “Pregnancyinduced alterations of neurogenic constriction and dilation of human uterine artery,” Am. J. Physiol., 268, No. 4, Part 2, H1694–H1701 (1995).

  32. E. Moerovic, R. Bollano, R. Mobini, et al., “Growth hormone improves bioenergetics and decreases catecholamines in postinfarct rat hearts,” Endocrinology, 141, No. 12, 4592–4599 (2000).

  33. Y. Ootsuka and R. M. McAllen, “Interactive drives from two brain stem premotor nuclei are essential to support rat tail sympathetic activity,” Am. J. Physiol, 289, No. 4, R1107–R1115 (2005).

    CAS  Google Scholar 

  34. K. Pacak, M. Palkovits, G. Yadid, et al., “Heterogeneous neurochemical responses to different stressors: a test of Selye’s doctrine of nonspecificity,” Am. J. Physiol., 275, No. 4, Part 2, R1247–R1255 (1998).

  35. L. M. Ren, T. Nakane, and S. Chiba, “Purinergic and adrenergic trans mission and their presynaptic modulation in canine isolated perfused splenic arteries,” Eur. J. Pharmacol., 295, No. 1, 61–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. R. A. Rhoades and D. R. Bell, Medical Physiology: Principles for Clinical Medicine, Wolters Kluwer, Lippincott Williams & Wilkins, Philadelphia (2012).

  37. C. Su, “Potentiative effects of alpha agonistic sympathomimetic amines on vasoconstriction by adrenergic nerve stimulation,” J. Pharmacol. Exp. Ther., 215, No. 2, 377–381 (1980).

    CAS  PubMed  Google Scholar 

  38. T. J. Verbeuren, W. J. Janssens, and P. M. Vanhoutte, “Effects of moderate acidosis on adrenergic neurotransmission in canine saphenous veins,” J. Pharmacol. Exp. Ther., 206, No. 1, 105–114 (1978).

    CAS  PubMed  Google Scholar 

  39. O. Vonend, S. Habbel, J. Stegbauer, et al., “Alpha(2A)-adrenoceptors regulate sympathetic transmitter release in mice kidneys,” Br. J. Pharmacol., 150, No. 1, 121–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. X. P. Yang and S. Chiba, “Dissociation of inhibitory effects of guanethidine on adrenergic and on purinergic transmission in isolated canine splenic artery,” Eur. J. Pharmacol., 380, No. 1, 5–11 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Yartsev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 9, pp. 1042–1052, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yartsev, V.N., Karachentseva, O.V. Noradrenaline-Induced Restoration of Acidosis-Inhibited Neurogenic Vasoreactivity at Using Different Electrical Stimulation Frequencies. Neurosci Behav Physi 47, 179–185 (2017). https://doi.org/10.1007/s11055-016-0383-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0383-x

Keywords

Navigation