Skip to main content
Log in

K+ Conduction description from the low frequency impedance and admittance of squid axon

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The form of power spectra of K+ conduction fluctuations in patches of squid axon suggested that K+ conduction kinetics are higher than first order (Fishman, Moore & Poussart, 1975,J. Membrane Biol. 24:305). To obtain an alternative description of ion conduction kinetics consistent with spontaneous fluctuations, the complex impedance and admittance of squid (Loligo pealei) axon were measured at low frequencies (1–1000 Hz) with a four electrode system using white Gaussian noise as a stochastic perturbation. As predicted from the spontaneous noise measurements, a low frequency impedance feature is observed between 1 and 30 Hz which is voltage and temperature dependent, disappears after substantial reduction in [K + i ], and is unaffected by the state of Na+ conduction or active transport. These measurements confirm and constitute strong support for the patch noise measurements and interpretations. The linearized Hodgkin-Huxley (HH) equations do not produce the low frequency feature since first order ion conduction kinetics are assumed. Computation of diffusion polarization effects associated with the axon sheath gives a qualitative account of the low frequency feature, but the potential dependence is opposite to that of the data. Thus, K+ conduction kinetics in the axon are not adequately described by a single first order process. In addition, significant changes inHH parameter values were required to describe the usual impedance (resonance) feature inLoligo pealei axon data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W.J., Jr., Palti, Y., Senft, J.P. 1973. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance.J. Membrane Biol. 13:387

    Article  Google Scholar 

  • Barnes, J.A., Jarvis, S., Jr. 1971. Efficient numerical and analog modelling of flicker noise processes.Nat. Bur. Stand. Tech. Note 604

  • Bendat, J.S., Piersol, A.G. 1971. Random Data: Analysis and Measurement Procedures. Wiley-Interscience, New York

    Google Scholar 

  • Brinley, F.J., Mullins, L.J. 1967. Sodium extrusion by internally dialyzed squid axons.J. Gen. Physiol. 50:2303

    PubMed  Google Scholar 

  • Canessa-Fischer, M., Zambrano, F., Rojas, E. 1968. The loss and recovery of the sodium pump in perfused giant axons.J. Gen. Physiol. 51:1625

    Google Scholar 

  • Chandler, W.K., Fitzhugh, R., Cole, K.S. 1962. Theoretical stability properties of a spaceclamped axon.Biophys. J. 2:105

    PubMed  Google Scholar 

  • Cole, K.S. 1968. Membranes, Ions and Impulses. University of California Press, Berkeley

    Google Scholar 

  • Conti, F., DeFelice, L.J., Wanke, E. 1975. Potassium and sodium ion current noise in the membrane of the squid giant axon.J. Physiol. (London) 248:45

    Google Scholar 

  • Davies, W.D.T. 1970. System Identification for Self-Adaptive Control. Wiley-Interscience, London

    Google Scholar 

  • Fishman, H.M. 1970. Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control.Biophys. J. 10:799

    PubMed  Google Scholar 

  • Fishman, H.M. 1973. Low impedance capillary-electrode for wideband recording of membrane potential in large axons.IEEE Trans. Biomed. Eng. 20:380

    PubMed  Google Scholar 

  • Fishman, H.M. 1973a. Relaxation spectra of potassium channel noise from squid axon membranes.Proc. Nat. Acad. Sci. USA 70:876

    PubMed  Google Scholar 

  • Fishman, H.M. 1975. Rapid complex impedance measurements of squid axon membrane via input-output cross correlation function.In: Proceedings of First Symposium on Testing and Identification of Nonlinear Systems. G.D. McCann and P.Z. Marmarelis, editors. p. 257. California Institute of Technology, Pasadena

    Google Scholar 

  • Fishman, H.M., Moore, L.E., Poussart, D.J.M. 1975. Potassium-ion conduction noise in squid axon membrane.J. Membrane Biol. 24:305

    Article  Google Scholar 

  • Fishman, H.M., Moore, L.E., Poussart, D.J.M., Siebenga, E. 1976. Non first-order K+ conduction impedance and noise feature in squid axon membrane.Biophys. J. 16:26a

    Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E. 1975. Noise measurements in squid axon membrane.J. Membrane Biol. 24:281

    Article  Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1956. The after-effects of impulses in the giant nerve fibers ofLoligo.J. Physiol. (London) 131:341

    Google Scholar 

  • Guttman, R., Feldman, L. 1975. White noise measurement of squid axon membrane impedance.Biochem. Biophys. Res. Commun. 67:427

    Article  PubMed  Google Scholar 

  • Guttman, R., Feldman, L., Lecar, H. 1974. Squid axon membrane response to white noise stimulation.Biophys. J. 14:941

    PubMed  Google Scholar 

  • Kubo, R. 1957. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems.J. Phys. Soc. Jpn. 12:570

    Google Scholar 

  • Lee, T.W. 1960. Statistical Theory of Communication. Whiley, New York

    Google Scholar 

  • Marmarelis, P.Z., Naka, K.-I. 1974. Identification of multi-input biological systems.IEEE Trans. Biomed. Eng. 21:88

    PubMed  Google Scholar 

  • Matsumoto, N., Inoue, I., Kishimoto, U. 1970. The electric impedance of the squid axon membrane measured between internal and external electrodes.Jpn. J. Physiol. 20:516

    PubMed  Google Scholar 

  • Mauro, A., Conti, F., Dodge, F., Schor, R. 1970. Subthreshold behavior and phenomenological impedance of the squid giant axon.J. Gen. Physiol. 55:497

    PubMed  Google Scholar 

  • Neumcke, B. 1971. Diffusion polarization at lipid bilayer membranes.Biophysik 7:95

    Google Scholar 

  • Nyguist, H. 1928. Thermal agitation of electric charge in conductors.Phys. Rev. 32:110

    Article  Google Scholar 

  • Siebenga, E., Meyer, W.A., Verveen, A.A. 1973. Membrane shot-noise in electrically depolarized nodes of Ranvier.Pfluegers Arch. 341:87

    Article  Google Scholar 

  • Takashima, S., Schwan, H.P. 1974. Passive electrical properties of squid axon membrane.J. Membrane. Biol. 17:51

    Article  Google Scholar 

  • Takashima, S., Schwan, H.P., Cole, K.S. 1975. Membrane impedance of squid axon during hyperpolarization and depolarization.Biophys. J. 15:39a

    Google Scholar 

  • Takashima, S., Yantorno, R., Pal, N.C. 1975. Electrical properties of squid axon membrane. II. Effect of partial degradation by phospholipase A and pronase on electrical characteristics.Biochim. Biophys. Acta 401:15

    PubMed  Google Scholar 

  • Taylor, R.E. 1965. Impedance of squid axon membrane.J. Cell. Comp. Physiol. 66(suppl. 2):21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishman, H.M., Poussart, D.J.M., Moore, L.E. et al. K+ Conduction description from the low frequency impedance and admittance of squid axon. J. Membrain Biol. 32, 255–290 (1977). https://doi.org/10.1007/BF01905222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01905222

Keywords

Navigation