Skip to main content
Log in

Bile acid conjugation in the chimpanzee: effective sulfation of lithocholic acid

  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

To characterize the hepatic biotransformation in the chimpanzee of the primary bile acid chenodeoxycholic acid (chenic) and its major bacterial metabolite lithocholic acid (lithocholic) a mixture of tracer amounts of14C-lithocholic and3H-chenic was injected intravenously into two animals with a bile fistula; the chemical form of radioactivity appearing in bile was inferred using thin layer chromatography. About 80% of chenic, and 70% of lithocholic was recovered in 90 min. Chenic was completely conjugated in bile, appearing predominantly as chenyltaurine (52%) and chenylglycine (37%). An unidentified conjugate (about 11%) was also found. Lithocholic was excreted completely as taurine and glycine conjugates, but the majority (63%) of conjugates was sulfated. Sulfation increased progressively with time, and lithocholylglycine was sulfated more than lithocholyltaurine. We conclude that the chimpanzee is similar to man in that the secondary bile acid lithocholic is efficiently sulfated. The chimpanzee thus differs from the baboon and rhesus monkey which sulfate lithocholic poorly. However, the chimpanzee differs from man and is similar to the baboon and rhesus monkey in showing preferential conjugation of bile acids with taurine. The results imply that hepatotoxicity caused by chenic, which is well documented in the rhesus monkey and baboon and has been related to defective lithocholic sulfation, should not occur in the chimpanzee.

Zusammenfassung

Um im Schimpansen die hepatische Biotransformation der primären Gallensäure Chenodeoxycholsäure und deren wichtigstem bakteriellen Metaboliten, Lithocholsäure zu charakterisieren, wurde ein Gemisch aus Spurenmengen von14C-Lithocholsäure und3H-Chenodeoxycholsäure intravenös in zwei Tiere mit Gallenfistel injiziert. Die chemische Form der Radioaktivität, die in der Galle erschien, wurde dünnschichtchromatographisch ermittelt. Etwa 80% der Chenodeoxycholsäure und 70% der Lithocholsäure wurden innerhalb von 90 min ausgeschieden. Die Chenodeoxycholsäure war vollständig konjugiert und erschien vorwiegend als Chenyltaurin (52%) und Chenylglycin (37%). 11% erschienen in einer Form, die bisher nicht identifiziert wurde. Lithocholsäure wurde vollständig als Taurin- und Glycinkonjugat in die Galle eliminiert; der größte Teil (63%) war zusätzlich sulfatiert. Die Sulfatierung nahm stetig mit der Zeit zu und Lithocholylglycine wurde stärker sulfatiert als Lithocholyltaurin.

Wir schließen aus diesen Befunden, daß der Schimpanse mit dem Menschen vergleichbar ist, indem er Lithocholsäure effektiv sulfatiert. Dadurch unterscheidet sich der Schimpanse vom Rhesusaffe und Baboon, die die Lithocholsäure nur in geringem Maße sulfatieren. Jedoch unterscheidet sich der Schimpanse auch vom Menschen und ähnelt dem Rhesusaffen und dem Baboon, indem er Gallensäure vorwiegend mit Taurin konjugiert. Die Ergebnisse lassen den Schluß zu, daß die Hepatotoxizität, die im Rhesusaffe und Baboon durch Chenodeoxycholat hervorgerufen wird, und auf eine geringe Sulfatierung der Lithocholsäure zurückgeführt wird, beim Schimpansen nicht bestehen sollte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, R. N., Thistle, J. L., Hofmann, A. F.: Lithocholate metabolism during chenotherapy for gall-stone dissolution. II. Absorption and sulfation. Gut17, 413–419 (1976b)

    PubMed  Google Scholar 

  • Allan, R. N., Thistle, J. L., Hofmann, A. F., Carter, J. A., Yu, P. Y. S.: Lithocholate metabolism during chenotherapy for gallstone dissolution. I. Serum levels of sulfated and unsulfated lithocholates. Gut17, 405–412 (1976a)

    PubMed  Google Scholar 

  • Back, P.: Bile acid glucuronides. III. Isolation and identification of a chenodeoxycholic acid glucuronide from human plasma in intrahepatic cholestasis. Hoppe-Seylers Z. physiol. Chem.357, 213–217 (1976)

    PubMed  Google Scholar 

  • Barbara, L., Roda, E., Roda, A., Sama, C., Festi, D., Mazzella, G., Aldini, R.: The medical treatment of cholesterol gallstones: experience with chenodeoxycholic acid. Digestion14, 209–219 (1976)

    PubMed  Google Scholar 

  • Bateson, M. C., Hopwood, D., Bouchier, I. A. A. D.: Effect of gallstone-dissolution therapy on human liver structure. Digestive diseases22, 293–299 (1977)

    Article  Google Scholar 

  • Bell, G. D., Mok, H. Y. I., Thwe, M., Murphy, G. M., Henry, K., Dowling, R. H.: Liver structure and function in cholelithiasis I. Effect of chenodeoxycholic acid. Gut15, 165–172 (1974)

    PubMed  Google Scholar 

  • v. Berge Henegouwen, G. P., Brandt, K. H., Eyssen, H., Parmentier, G.: Sulfated and unsulfated bile acids in serum, bile and urine of patients with cholestasis. Gut17, 861–869 (1976)

    PubMed  Google Scholar 

  • Cass, O. W., Cowen, A. E., Hofmann, A. F., Coffin, S. B.: Thin layer Chromatographic separation of sulfated and unsulfated lithocholic acid and its glycine and taurine conjugates. J. Lipid Res.16, 159–160 (1975)

    PubMed  Google Scholar 

  • Cowen, A. E., Hofmann, A. F., Hachey, D. L., Thomas, P. J., Belobaba, D. T. E., Klein, P. D., Tokes, L.: Synthesis of 11,12-2H2-labelled chenodeoxycholic and lithocholic acids. J. Lipid Res.17, 231–238 (1976)

    PubMed  Google Scholar 

  • Cowen, A. E., Korman, M. G., Hofmann, A. F., Cass, O. W.: Metabolism of lithocholate in man I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine and their sulfates. Gastroenterology69, 59–66 (1975a)

    PubMed  Google Scholar 

  • Cowen, A. E., Korman, M. G., Hofmann, A. F., Cass, O. W., Coffin, S. B.: Metabolism of lithocholate in healthy man. II. Enterohepatic circulation. Gastroenterology69, 67–76 (1975b)

    PubMed  Google Scholar 

  • Coyne, M. J., Bonorris, G., Chung, A., Goldstein, L. I., Lahana, D., Schoenfield, L. J.: Treatment of gallstones with chenodeoxycholic acid and phenobarbital. New Engl. J. Med.292, 604–607 (1975)

    PubMed  Google Scholar 

  • Danielsson, H., Einarsson, K.: Formation and metabolism of bile acids. Biol. Basis Med.5, 279–315 (1969)

    Google Scholar 

  • Danzinger, R. G., Hofmann, A. F., Schoenfield, L. S., Thistle, S. L.: Effect of oral chenodeoxycholic acid on bile acid kinetics and biliary lipid composition in women with cholelithiasis. J. clin. Invest.52, 2809–2821 (1973)

    PubMed  Google Scholar 

  • Dyrszka, H., Salen, G., Chen, T.: Toxicity of chenodeoxycholic acid in the rhesus monkey. Gastroenterology69, 333–337 (1975)

    PubMed  Google Scholar 

  • Dyrszka, H., Salen, G., Zaki, F. G., Chen, T., Mosbach, E. H.: Hepatic toxicity in the rhesus monkey treated with chenodeoxycholic acid for 6 months; biochemical and ultrastructural studies. Gastroenterology70, 93–104 (1976)

    PubMed  Google Scholar 

  • Fischer, D. C., Cooper, N. S., Rothschild, M. A., Mosbach, E. H.: Effect of dietary chenodeoxycholic acid and lithocholic acid in the rabbit. Amer. J. dig. Dis.19, 877–886 (1974)

    Article  PubMed  Google Scholar 

  • Fröhling, W., Stiehl, A.: Bile salt glucuronides: Identification and quantitative analysis in the urine of patients with cholestasis. Europ. J. clin. Invest.6, 67–74 (1976)

    PubMed  Google Scholar 

  • Fromm, A., Eschler, A., Töllner, D., Canzler, H., Schmidt, F. W.: Untersuchungen zur Gallensteinauflösung in vivo. Dtsch. Med. Wschr.100, 1619–1624 (1975)

    PubMed  Google Scholar 

  • Gadacz, T. R., Allan, R. N., Mack, E., Hofmann, A. F.: Impaired lithocholate sulfation in the rhesus monkey: a possible mechanism for chenodeoxycholate toxicity. Gastroenterology70, 1125–1129 (1976)

    PubMed  Google Scholar 

  • Gerolami, A., Sarles, H., Brette, R., Paraf, A., Rautureau, J., Debray, C. H., Bermann, C., Etienne, J. P., Chaput, J. C., Petite, J. P.: Controlled trial of chenodeoxycholic acid therapy for radiolucent gallstones: A multicenter study. Digestion (in press)

  • Goldstein, L.: Animal toxicology studies of chenic acid. Report of the Biostatistic Center, National Cooperative Gallstone Study, Document 87. (in press)

  • Hepner, G. W., Sturman, J. A., Hofmann, A. F., Thomas, P. J.: Metabolism of steroid and amino acid moieties of conjugated bile acids in man III. Taurocholic acid. J. clin. Invest.52, 715–724 (1973)

    PubMed  Google Scholar 

  • Hoffman, N. E., Iser, J. E., Smallwood, R. A.: Hepatic bile acid transport: effect of conjugation and position of hydroxyl groups. Amer. J. Physiol.229, 298–302 (1975)

    PubMed  Google Scholar 

  • Hofmann, A. F., Small, D. M.: Detergent properties of bile salts: Correlation with physiological function. Ann. Rev. Med.18, 433–476 (1967)

    Article  Google Scholar 

  • Iser, J. H., Dowling, R. H., Mok, H. Y. I., Bell, G. D.: Chenodeoxycholic acid treatment of gallstones. New Engl. J. Med.293, 378–383 (1975)

    PubMed  Google Scholar 

  • Makino, I., Hashimoto, H., Shinozaki, K., Yoshino, K., Nakagawa, H.: Sulfated and nonsulfated bile acids in urine, serum and bile of patients with hepatobiliary diseases. Gastroenterology68, 543–553 (1975)

    Google Scholar 

  • McSherry, C. K., Morrissey, K. P., Swarm, R. L., May, P. S., Nieman, W. H., Glenn, F.: Chenodeoxycholic acid induced liver injury in pregnant and neonatal baboons. Ann. Surg.184, 490–499 (1976)

    PubMed  Google Scholar 

  • Morrissey, K. P., McSherry, C. K., Swarm, R. L., Nieman, W. H., Deitrick, J. E.: Toxicity of chenodeoxycholic acid in the nonhuman primate. Surgery77, 851–860 (1975)

    PubMed  Google Scholar 

  • Palmer, R. H.: Bile acids, liver injury and liver disease. Arch. intern. Med.130, 606–617 (1972)

    Article  PubMed  Google Scholar 

  • Palmer, R. H.: Toxic effects of lithocholic acid on the liver and biliary tree. In: The hepatobiliary system (W. Taylor, (ed.)). New York-London: Plenum Press 1976

    Google Scholar 

  • Palmer, R. H., Bolt, M. D.: Bile acid sulfates I. Synthesis of lithocholic acid sulfates and their identification in human bile. J. Lipid Res.12, 671–679 (1971)

    PubMed  Google Scholar 

  • Palmer, R. H., McSherry, C. K., May, P. S.: Lithocholate metabolism in baboons, ingesting chenodeoxycholic acid. Gastroenterology72, 1173 (1977)

    Google Scholar 

  • Portman, O. W.: Importance of diet, species and intestinal flora in bile acid metabolism. Fed. Proc.21, 896–902 (1962)

    PubMed  Google Scholar 

  • Rufie, J.: Immunogenetics in man. Adv. Behav. Biol.9, 177–215 (1972)

    Google Scholar 

  • Salen, G., Dyrszka, H., Chen, T., Saltzman, W. H., Mosbach, E. H.: Prevention of chenodeoxycholic acid toxicity with lincomycin. Lancet 1975I, 1082

    Article  Google Scholar 

  • Sjövall, J.: Effect of dietary glycine and taurine on bile acid conjugation in man. Bile acids and steroids. 75. Proc. Soc. exp. Biol. (N.Y.)100, 676–678 (1959)

    Google Scholar 

  • Snyder, F., Kimble, H.: An automatic zonal scraper and sample collector for radioassay of thin-layer chromatograms. Analyt. Biochem.11, 510–518 (1965)

    Article  PubMed  Google Scholar 

  • Stiehl, A.: Bile salt sulfates in cholestasis. Europ. J. clin. Invest.4, 59–63 (1974)

    PubMed  Google Scholar 

  • Sturman, J. A., Hepner, G. W., Hofmann, A. F., Thomas, P. J.: Metabolism of (35S)taurine in man. J. Nutr.105, 1206–1214 (1975)

    PubMed  Google Scholar 

  • Thistle, J. L., Hofmann, A. F.: Efficacy and specificity of chenodeoxycholic acid therapy for dissolving gallstones. New Engl. J. Med.289, 655–659 (1973)

    PubMed  Google Scholar 

  • Thistle, J. L., Hofmann, A. F., Ott, B. J., Stephens, D. H.: Chenotherapy for gallstone dissolution I. Efficacy and safety. J. Amer. med. Ass. (in press)

  • Watkins, J. B., Brown, E. R.: Conjugation and sulfation of lithocholic acid in fetal liver. In: Bile acid metabolism in health and disease (G. Paumgartner, A. Stiehl, eds.). Lancaster: MTP 1977

    Google Scholar 

  • Webster, K. H., Lancaster, M. C., Wease, D. F., Hofmann, A. F., Baggenstoss, A. H.: Influence of primary bile acid feeding on cholesterol metabolism and hepatic function in the rhesus monkey. Mayo Clin. Proc.50, 134–138 (1975)

    PubMed  Google Scholar 

  • Weiner, M., Dayton, P. G., Hendrickz, A. G.: Drug disposition patterns in subhuman primates as compared to humans and other species. In: Use of nonhuman primates in drug evaluation (H. Vagtborg, ed.). Austin: Univ. of Texas Press 1968

    Google Scholar 

  • Williams, R. T.: Species variations in drug biotransformation. In: Fundamentals of drug metabolism and disposition (E. G. Mandel, E. L. Way, eds.). Baltimore: Williams and Wilkins 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by GSF, as well as Mayo Foundation, Alexander von Humboldt Foundation and Grant AM 16770

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenk, M., Hofmann, A.F., Carlson, G.L. et al. Bile acid conjugation in the chimpanzee: effective sulfation of lithocholic acid. Arch Toxicol 40, 109–118 (1978). https://doi.org/10.1007/BF01891965

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01891965

Key words

Navigation