Skip to main content
  • Part II. Invited Papers Dedicated To The Memory Of Charles H. Randall (1928–1987)
  • Published:

Superposition in quantum and classical mechanics

Abstract

Using the mathematical notion of an entity to represent states in quantum and classical mechanics, we show that, in a strict sense, proper superpositions are possible in classical mechanics.

This is a preview of subscription content, access via your institution.

References

  1. D. Aerts, “Description of many physical entities without the paradoxes encountered in quantum mechanics,”Found. Phys. 12, 1131–1170 (1982).

    Google Scholar 

  2. E. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Encyclopaedia of Mathematics and Its Applications, Gian-Carlo Rota, ed., Vol. 15) (Addison-Wesley, Reading, Massachusetts, 1981).

    Google Scholar 

  3. G. Birkhoff,Lattice Theory, 3rd ed. (American Mathematical Society Colloquium Publications, Providence, Rhode Island, 1967).

    Google Scholar 

  4. G. Birkhoff and J. von Neumann, “The logic of quantum mechanics,”Ann. Math. 37, 823–843 (1936).

    Google Scholar 

  5. R. Davies and J. Lewis, “An operational approach to quantum probability,”Commun. Math. Phys. 17, 239–260 (1970).

    Google Scholar 

  6. P. Dirac,The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1930).

    Google Scholar 

  7. C. Edwards, “The operational approach to algebraic quantum theory I,”Commun. Math. Phys. 16, 207–230 (1970).

    Article  Google Scholar 

  8. G. Emch,Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley-Interscience, New York, 1972).

    Google Scholar 

  9. D. Foulis and C. Randall, “What are quantum logics and what ought they to be?” inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. (Ettore Majorana International Science Series, 8) (Plenum Press, New York, 1981).

    Google Scholar 

  10. D. Foulis and C. Randall, “Dirac revisited,” inSymposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985).

    Google Scholar 

  11. D. Foulis, C. Piron, and C. Randall, “Realism, operationalism, and quantum mechanics,”Found. Phys. 13, 813–842 (1983).

    Google Scholar 

  12. R. Greechie and S. Gudder, “Quantum logics,” inThe Logico-Algebraic Approach to Quantum Mechanics, Vol. I:Historical Evolution, C. A. Hooker, ed. (Reidel, Dordrecht, 1975).

    Google Scholar 

  13. S. Gudder,Quantum Probability (Academic Press, San Diego, 1988).

    Google Scholar 

  14. J. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

  15. G. Kalmbach,Orthomodular Lattices (Academic Press, New York, 1983).

    Google Scholar 

  16. G. Mackey,The Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    Google Scholar 

  17. P. Mittelstaedt,Quantum Logic (Reidel, Dordrecht, 1978).

    Google Scholar 

  18. C. Piron,Foundations of Quantum Physics (Mathematical Physics Monograph Series, A. Wightman, ed.) (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  19. C. Randall and D. Foulis, “Properties and operational propositions in quantum mechanics,”Found. Phys. 13, 843–863 (1983).

    Google Scholar 

  20. M. Stone, “The theory of representations for a Boolean algebra,”Trans. Am. Math. Soc. 40, 37–111 (1936).

    Google Scholar 

  21. M. Stone, “Topological representations of distributive lattices and Brouwerian logics,”Cas. Mat. Fys. 67, 1–25 (1937).

    Google Scholar 

  22. M. Stone, Applications of the theory of Boolean rings to general topology,Trans. Am. Math. Soc. 41, 375–481 (1937).

    Google Scholar 

  23. R. Streater and A. Wightman,PCT, Spin and Statistics, and All That (Mathematical Physics Monograph Series, A. S. Wightman, ed.) (Benjamin, Reading, Massachusetts, 1964).

    Google Scholar 

  24. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955).

    Google Scholar 

  25. G. Wick, E. Wigner, and A. Wightman, “Intrinsic parity of elementary particles,”Phys. Rev. 88, 101–105 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the Memory of Charles H. Randall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bennett, M.K., Foulis, D.J. Superposition in quantum and classical mechanics. Found Phys 20, 733–744 (1990). https://doi.org/10.1007/BF01889458

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889458

Keywords

  • Classical Mechanic
  • Strict Sense
  • Mathematical Notion
  • Proper Superposition