Skip to main content

Local Realism Without Hidden Variables

  • Chapter
  • First Online:
Quantum Foundations, Probability and Information

Abstract

Quantum superposition is a process in which single entities express the effect of many states at the same time. This is difficult to explain with local realist models, because classical objects can only be in one state at a time. So far, the main approach was to invoke a class of hidden variables that might explain the appearance (but not the reality) of superposition effects. Yet, this hypothesis was falsified by the experimental violations of Bell’s inequality. The alternative is to accept the ontological validity of quantum superposition, with an interpretive twist. The single net state, which is equal to the vector sum of many component states, must be described as real. This is not only plausible. It actually avoids the known interpretive pitfalls of quantum mechanics (including the measurement problem and the EPR paradox).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  Google Scholar 

  2. Hensen, R., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 526, 682–686 (2015)

    Article  Google Scholar 

  3. Shalm, L.K., et al.: A strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  Google Scholar 

  4. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  5. Mardari, G. N., Greenwood, J. A.: Classical sources of non-classical physics: the case of linear superposition. arXiv:quant-ph/0409197 (2013)

    Google Scholar 

  6. Howard, D.: Revisiting the Einstein-Bohr dialogue. Iyyun: Jerus. Philoso. Q. 56, 57–90 (2007)

    Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  Google Scholar 

  8. Afriat, A., Selleri, F.: The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear, and Particle Physics. Springer, New York (1998)

    MATH  Google Scholar 

  9. Andersson, E., Barnett, S.M., Aspect, A.: Joint measurements of spin, operational locality and uncertainty. Phys. Rev. A. 72, 042104 (2005)

    Article  Google Scholar 

  10. Banik, M., Gazi, M.R., Ghosh, S., Kar, G.: Degree of complementarity determines the nonlocality in quantum mechanics. Phys. Rev. A. 87, 052125 (2013)

    Article  Google Scholar 

  11. Oppenheim, J., Wehner, S.: The uncertainty principle determines the non-locality of quantum mechanics. Science. 330, 1072–1074 (2010)

    Article  MathSciNet  Google Scholar 

  12. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  13. Seevinck, M., Uffink, J.: Local commutativity versus Bell inequality violation for entangled states and versus non-violation for separable states. Phys. Rev. A. 76, 042105 (2007)

    Article  MathSciNet  Google Scholar 

  14. Wolf, M.M., Perez-Garcia, D., Fernandez, C.: Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. Phys. Rev. Lett. 103, 230402 (2009)

    Article  Google Scholar 

  15. Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  16. Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw Hill, New York (1966)

    Google Scholar 

  17. Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)

    Article  Google Scholar 

  18. Khrennikov, A.: Bell-Boole inequality: nonlocality or probabilistic incompatibility of random variables? Entropy. 10, 19–32 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mardari, G.N. (2018). Local Realism Without Hidden Variables. In: Khrennikov, A., Toni, B. (eds) Quantum Foundations, Probability and Information. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-74971-6_12

Download citation

Publish with us

Policies and ethics