Skip to main content

Advertisement

Log in

Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxaemia

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

In anaesthetized artificially ventilated dogs, the effect of graded arterial hypoxaemia on cerebral blood flow (CBF) and on the oxidative carbohydrate metabolism of the brain was tested. It is shown that the hypoxic vasodilatory influence on cerebral vessels is present even atmoderate systemic hypoxaemia, provided that PaCO2 is kept within normal limits. At PaO2 of about 50 Torr, CBF increased from 56.6 to 89.7 ml/100 g/min. With increasing cerebral hyperaemia (CBF increased to 110.9 ml/100 g/min, at PaO2 of 30 Torr), CMRO2 (4.2 ml/100 g/min) was not significantly raised above its normal level (4.7 ml/100 g/min) even with profound arterial hypoxaemia. This shows that CMRO2 levels are poor indices of hypoxic hypoxia. A disproportionately high increase in cerebral glucose uptake (CMR glucose levels rose from 4.4 to 10.4 mg/100 g/min) and enhanced cerebral glycolysis (CMR lactate changed from 0.2 to 1.6 mg/100 g/min) at moderately reduced PaO2 (50 Torr) indicated early metabolic changes which became more marked with further falls in arterial oxygen tension. However, 60 minutes after restoration of a normal PaO2 level, CBF and brain metabolism were found to have completely recovered. It is concluded that a short period of profound systemic hypoxaemia does not produce long lasting metabolic and circulatory disorders of the brain provided the cerebral perfusion pressure does not vary, and is kept at normal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernsmeier, A., Siemons, K., Die Messung der Hirndurchblutung mit der Stickoxydulmethode. Pflügers Arch. ges. Physiol.258 (1953), 149–162.

    Google Scholar 

  2. Bruce, D. A., Langfitt, T. W., Miller, J. D., Schutz, H., Vapalahti, M. P., Stanek, A., Goldberg, H. I., Regional cerebral blood flow, intracranial pressure and brain metabolism in comatose patients. J. Neurosurg.38 (1973), 131–144.

    PubMed  Google Scholar 

  3. Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., Wollman, H., Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol.23 (1967), 183–189.

    PubMed  Google Scholar 

  4. —, The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology37 (1972), 148–177.

    PubMed  Google Scholar 

  5. Courtice, F. C., The effect of oxygen lack on the cerebral circulation. J. Physiol.100 (1941), 198–211.

    Google Scholar 

  6. Cowley, A. W., Liard, J. F., Guyton, A. C., Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circulat. Res.32 (1973), 564–576.

    PubMed  Google Scholar 

  7. Duffy, T. E., Nelson, S. R., Lowry, O. H., Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem.19 (1972), 959–977.

    PubMed  Google Scholar 

  8. Frei, H. J., Pöll, W., Reulen, H. J., Brock, M., Schürmann, K., Regional energy metabolism, tissue lactate content and rCBF in cold injury oedema. Brain and Blood Flow, pp. 125–129, ed. by R. W. Russell. London: Pitman Medical and Scientific Publishing Co. Ltd. 1971.

    Google Scholar 

  9. Gibbs, F. A., Gibbs, E. L., Lennox, W. S., Changes in human cerebral blood flow consequent on alterations in blood gases. Amer. J. Physiol.111 (1935), 557–563.

    Google Scholar 

  10. Gottstein, U., Held, K., Büttner, H., Berghoff, W., Continuous monitoring of arterial and cerebral venous glucose differences in human subjects during intravenous infusions of glucose and insulin. In: Research on the cerebral circulation. Fourth international Salzburg Conference. Ed. by J. S. Meyer, pp. 205–210. Springfield, Ill.: Ch. C Thomas. 1970.

    Google Scholar 

  11. Gurdjian, E. S., Stone, W. E., Cerebral metabolism in hypoxia. Arch. Neurol. Psychiat.51 (1944), 472–477.

    Google Scholar 

  12. Häggendal, E., Löfgren, J., Nilsson, N. J., Zwetnow, N. N., Effects of varied cerebrospinal fluid pressure on cerebral blood flow in dogs. Acta physiol. scand.79 (1970 a), 262–271.

    PubMed  Google Scholar 

  13. — — — —, Prolonged cerebral hyperemia after periods of increased cerebrospinal fluid pressure in dogs. Acta physiol. scand.79 (1970 b), 272–279.

    PubMed  Google Scholar 

  14. Hamer, J., Hoyer, S., Stoeckel, H., Alberti, E., Weinhardt, F., Cerebral blood flow and cerebral metabolism in acute increase of intracranial pressure. Acta neurochir.28 (1973), 95–110.

    Google Scholar 

  15. —, Alberti, E., Hoyer, S., Effects of arterial hypoxemia, hypercapnia and changes in cerebral perfusion pressure on mean cerebrospinal fluid and sagittal sinus pressure. Acta neurochir.30 (1974), 167–179.

    Google Scholar 

  16. Johnston, I. H., Rowan, J. O., Harper, A. M., Jennett, W. B., Raised intracranial pressure and cerebral blood flow. Cisterna magna infusion in primates. J. Neurol. Neurosurg. Psychiat.35 (1972), 285–296.

    PubMed  Google Scholar 

  17. Kaasik, A. E., Nilsson, L., Siesjö, B. K., The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats. Acta physiol. scand.78 (1970), 433–447.

    PubMed  Google Scholar 

  18. Kety, S. S., Schmidt, C. F., The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Invest.27 (1948), 484–492.

    Google Scholar 

  19. Kirchheim, H., Gross, R., Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog. Pflügers Arch. ges. Physiol.327 (1971), 203–224.

    Google Scholar 

  20. Kjällquist, A., Siesjö, B. K., Zwetnow, N., Effects of increased intracranial pressure on cerebral blood flow and on cerebrospinal fluid HCO3, pH, lactate and pyruvate in dogs. Acta physiol. scand.75 (1969), 345–352.

    PubMed  Google Scholar 

  21. Klatzo, I., Farkas-Bargeton, E., Guth, L., Olsson, Y., Some morphological and biochemical aspects of abnormal glycogen accumulation. Proceedings of the VI. International Congress of Neuropathology, pp. 351–365. Paris: Masson et Cie. 1970.

    Google Scholar 

  22. Kogure, K., Scheinberg, P., Reinmuth, O. M., Fujishima, M., Busto, R., Mechanisms of cerebral vasodilatation in hypoxia. J. Appl. Physiol.29 (1970), 223–229.

    PubMed  Google Scholar 

  23. Langfitt, T. W., Weinstein, J. D., Kassell, N. F., Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology15 (1965), 622–641.

    PubMed  Google Scholar 

  24. Lassen, N. A., Control of cerebral circulation in health and disease. Circulat. Res.34 (1974), 749–760.

    PubMed  Google Scholar 

  25. Linton, R. A. F., Miller, R., Cameron, I. R., The effect of hypercapnia and carotid sinus nerve section on hypothalamic blood flow. Proceedings of the VII. International Symposium on Cerebral Blood Flow and Metabolism, Aviemore 1975 (to be published).

  26. Lowry, O. H., Passonneau, J. V., The relationship between substrates and enzymes of glycolysis in brain. J. Biol. Chem.239 (1964), 31–42.

    PubMed  Google Scholar 

  27. Marshall, L. F., Durity, F., Graham, D. I., Welsh, F., Lounsbury, R., Langfitt, T. W., The pathophysiological, morphological, metabolic and flow consequences of severe experimental intracranial hypertension in the rabbit. In Intracranial Pressure II. Ed. by N. Lundberg, U. Ponten and M. Brock. pp. 172–176. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  28. Meinig, G., Reulen, H. J., Magarly, C., Hase, U., Hey, O., Changes of cerebral hemodynamics and energy metabolism during increased CSFpressure and brain edema. In Intracranial Pressure. Ed. by M. Brock and H. Dietz, pp. 79–84. Berlin-Heidelberg-New York: Springer. 1972.

    Google Scholar 

  29. Miller, J. D., Garibi, J., Intracranial volume/pressure relationships during continuous monitoring of ventricular fluid pressure. In Intracranial Pressure. Ed. by M. Brock and H. Dietz, pp. 270–274. Berlin-Heidelberg-New York: Springer. 1972.

    Google Scholar 

  30. —, Stanek, A. E., Langfitt, T. W., Cerebral blood flow regulation during experimental brain compression. J. Neurosurg.39 (1973), 186–196.

    PubMed  Google Scholar 

  31. Mossakowski, M. J., Histochemistry of pathological glia. Proceedings of the VI. International Congress of Neuropathology, pp. 366–376. Paris: Masson et Cie. 1970.

    Google Scholar 

  32. Noell, W., Schneider, M., Über die Durchblutung und die Sauerstoffversorgung des Gehirns im akuten Sauerstoffmangel. I. Die Gehirndurchblutung. Pflügers Arch. ges. Physiol.246 (1942), 181–249.

    Google Scholar 

  33. — —, Über die Durchblutung und die Sauerstoffversorgung des Gehirns im akuten Sauerstoffmangel. III. Die arterio-venöse Sauerstoff- und Kohlensäuredifferenz. Pflügers Arch. ges. Physiol.246 (1942), 207–249.

    Google Scholar 

  34. Norberg, K., Siesjö, B. K., Cerebral metabolism in hypoxic hypoxia. I: Pattern of activation of glycolysis, a re-evaluation. Brain Res.86 (1975), 31–44.

    PubMed  Google Scholar 

  35. O'Rourke, A. R., Bishop, V. S., Tucson, A., Cardiovascular hemodynamics in the conscious dog. Amer. Heart. J.81 (1971), 55–60.

    PubMed  Google Scholar 

  36. Ponte, J., and Purves, M. J., The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J. Physiol.237 (1974), 315–340.

    PubMed  Google Scholar 

  37. Reinhard, K. R., Miller, M. E., Evans, H. E., The craniovertebral veins and sinuses of the dog. Amer. J. Anat.111 (1962), 67–87.

    PubMed  Google Scholar 

  38. Salford, L. G., Plum, F., Siesjö, B. K., Graded hypoxia-oligemia in rat brain. Arch. Neurol.29 (1973), 227–233.

    PubMed  Google Scholar 

  39. Shimojyo, S., Scheinberg, P., Kogure, K., Reinmuth, O. M., The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption. Neurology18 (1968), 127–133.

    PubMed  Google Scholar 

  40. Siesjö, B. K., Nilsson, L., The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand. J. Clin. Lab. Investig.27 (1971), 83–95.

    Google Scholar 

  41. —, Plum, F., Cerebral energy metabolism in normoxia and in hypoxia. Acta anaesthesiol. scand. suppl.45 (1971), 81–101.

    PubMed  Google Scholar 

  42. —, (1975, personal communication).

  43. Thorn, W., Pfleiderer, G., Frowein, R. A., Ross, I., Stoffwechselvorgänge im Gehirn bei akuter Anoxie, akuter Ischämie und in der Erholung. Pflügers Arch. ges. Physiol.261 (1955), 334–360.

    Google Scholar 

  44. Weinhardt, F., Quadbeck, G., Hoyer, S., Quantitative Bestimmung von Blutgasvolumina mit Hilfe der Gaschromatographie. Z. prakt. Anästh.6 (1972), 337–347.

    Google Scholar 

  45. Zwetnow, N. N., Effects of increased cerebrospinal fluid pressure on the blood flow and on the energy metabolism of the brain. Acta physiol. scand. suppl.339 (1970), 1–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, J., Hoyer, S., Alberti, E. et al. Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxaemia. Acta neurochir 33, 141–150 (1976). https://doi.org/10.1007/BF01886665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01886665

Key words

Navigation