Skip to main content
Log in

Study ofl-tryptophan corepressor binding to mutatedE. coli tryptophan repressor proteins by optically detected triplet-state magnetic resonance

  • Special Topic Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Phosphorescence and optically detected magnetic resonance (ODMR) measurements have been carried out on the tryptophan (Trp) residues ofEscherichia coli Trp repressor protein (W Rep) and its two single Trp-containing mutants, W19F and W99F. The enhanced resolution afforded by the W19F and W99F mutants allowed us to characterize the triplet state of boundl-Trp corepressor using phosphorescence wavelengt-selected ORMR spectroscopy. We find that at 77 K the 0,0 band peak wavelength ofl-Trp is shifted from 405.5 nm in the aqueous solvent to ca. 410 nm when bound to the corepressor binding site. This red shift of the phosphorescence along with a corresponding increase in the zero-field splittingE value and narrowing of the ODMR linewidth characterize a binding site that is less polar, as well as more polarizable and homogeneous, than the aqueous solvent. This conclusion is in agreement with the X-ray crystallographic structure of the holorepressor protein that places the indole chromophore of the bound corepressor in a cleft in which it is sandwiched by the side chains of arginines 54 and 84.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Rose, C. L. Squires, C. Yanofsky, H.-L. Yang, and G. Zubay (1973)Nature New Biol. 245, 133–137.

    PubMed  Google Scholar 

  2. R. P. Gunsalus and C. yanofsky (1980)Proc. Natl. Acad. Sci. USA 77, 7117–7121.

    PubMed  Google Scholar 

  3. G. Zurawski, R. P. Gunsalus, K. D. Brown, and C. Yanofsky (1981)J. Mol. Biol. 145, 47–73.

    PubMed  Google Scholar 

  4. R. L. Kelly and C. Yanofsky (1982)Proc. Natl. Acad. Sci. USA 79, 3120–3124.

    PubMed  Google Scholar 

  5. A. Joachimiak, R. L. Kelly, R. P. Gunsalus, C. Yanofsky, and P. B. Sigler (1983)Proc. Natl. Acad. Sci. USA 80, 668–672.

    PubMed  Google Scholar 

  6. A. N. Lane (1985)Eur. J. Biochem. 157, 405–413.

    Google Scholar 

  7. D. N. Arvidson, C. Bruce, and R. P. Gunsalus (1986)J. Biol. Chem. 261, 238–243.

    PubMed  Google Scholar 

  8. R. Q. Marmorstein, A. Joachimiak, M. Sprinzl, and P. B. Sigler (1987)J. Biol. Chem. 262, 4922–4927.

    PubMed  Google Scholar 

  9. I. P. Crawford and G. V. Stauffer (1980)Annu. Rev. Biochem. 49, 163–195.

    PubMed  Google Scholar 

  10. T. Platt (1980) in J. H. Miller and W. S. Reznikoff (Eds.),The Operon, Ed 2, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 263–302.

    Google Scholar 

  11. R. L. Sommerville (1983) in K. M. Hermann and R. L. Sommerville (Eds.),Amino Acid Biosynthesis and Regulation, Addison-Wesley, Reading, MA, pp. 351–378.

    Google Scholar 

  12. R. W. Shevitz, Z. Otwinowski, A. Joachimiak, C. L. Lawson, and P. B. Sigler (1985)Nature 317, 782–786.

    PubMed  Google Scholar 

  13. R.-G. Zhang, A. Joachimiak, C. L. Lawson, R.W. Shevitz, Z. Otwinowski, and P. B. Sigler (1987)Nature 327, 591–597.

    PubMed  Google Scholar 

  14. Z. Otwinowski, R. W. Shevitz, R.-G. Zhang, C. L. Lawson, A. Joachimiak, R. Q. Marmorstein, B.F. Luisi, and P. B. Sigler (1988)Nature 335, 321–329.

    PubMed  Google Scholar 

  15. C. L. Lawson, R.-G. Zhang, R. W. Shevitz, Z. Otwinowski, A. Joachimiak, and P. B. Sigler (1988)Proteins 3, 18–21.

    PubMed  Google Scholar 

  16. R. Q. Marmorstein and P. B. Sigler (1989)J. Biol. Chem. 264, 9146–9154.

    Google Scholar 

  17. S. Arnott and D. W. L. Hukins (1972)Biochem. Biophys. Res. Commun. 47, 1504–1509.

    PubMed  Google Scholar 

  18. M. R. Eftink, G. D. Ramsay, L. E. Burns, A. H. Maki, C. J. Mann, C. J. Matthews, and C. A. Ghiron (1993)Biochemistry 32, 9189–9198.

    Google Scholar 

  19. A. N. Lane and O. Jardetzky (1985)Eur. J. Biochem. 152, 411–418.

    PubMed  Google Scholar 

  20. R. M. Purkey and W. C. Galley (1970)Biochemistry 9, 3569–3575.

    PubMed  Google Scholar 

  21. J. M. Davis and A. H. Maki (1984)Biochemistry 23, 6249–6256.

    PubMed  Google Scholar 

  22. J. G. Weers and A. H. Maki (1986)Biochemistry 25, 2897–2904.

    PubMed  Google Scholar 

  23. S. Ghosh, L.-H. Zang, and A. H. Maki (1988)J. Chem. Phys. 88, 2769–2775.

    Google Scholar 

  24. J.-U. von Schütz, J. Zuclich, and A. H. Maki (1974)J. Am. Chem. Soc. 96, 714–718.

    PubMed  Google Scholar 

  25. S.-Y. Mao and A. H. Maki (1987)Biochemistry 26, 3576–3582.

    PubMed  Google Scholar 

  26. M. I. Khamis, J. R. Casas-Finet, A. H. Maki, J. B. Murphy, and J. W. Chase (1987)J. Biol. Chem. 262, 10938–10945.

    PubMed  Google Scholar 

  27. S. Ghosh, L.-H. Zang, and A. H. Maki (1988)Biochemistry 27, 7816–7820.

    PubMed  Google Scholar 

  28. A. H. Maki (1984) in L. J. Berliner and J. Reuben (Eds.),Biological Magnetic Resonance, Vol. 6, Plenum, New York, pp. 470–557.

    Google Scholar 

  29. A. J. Hoff (1989) in A. J. Hoff (Ed.),Advanced EPR with Applications in Biology and Biochemistry, Elsevier, Amsterdam, pp. 633–684.

    Google Scholar 

  30. D. W. Marquardt (1963)J. Soc. Indust. Appl. Math. 11, 431–441.

    Google Scholar 

  31. S. Ghosh, M. Petrin, and A. H. Maki (1986)Biophys. J. 49, 753–760.

    PubMed  Google Scholar 

  32. H. C. Brenner and V. Kolubayev (1988)J. Lumin. 39, 251–257.

    Google Scholar 

  33. A. H. Maki, P. Svejda, and J. R. Huber (1978)Chem. Phys. 32, 369–380.

    Google Scholar 

  34. M. V. Hershberger, A. H. Maki, and W. C. Galley (1980)Biochemistry 19, 2204–2209.

    PubMed  Google Scholar 

  35. W. C. Galley and R. M. Purkey (1970)Proc. Natl. Acad. Sci. 67, 1116–1121.

    Google Scholar 

  36. K. Itoh and T. Azumi (1973)Chem. Phys. 22, 395–399.

    Google Scholar 

  37. K. Itoh and T. Azumi (1975)J. Chem. Phys. 62, 3431–3438.

    Google Scholar 

  38. A. H. Maki and T. Co (1976)Biochemistry 15, 1229–1235.

    PubMed  Google Scholar 

  39. C. L. Lawson and P. S. Sigler (1988)Nature 333, 869–871.

    PubMed  Google Scholar 

  40. C. A. Royer, J. A. Gardner, J. M. Beechem, J.-C. Brochon, and K. S. Matthews (1990)Biophys. J. 58, 363–378.

    PubMed  Google Scholar 

  41. J. van Egmond, B. E. Kohler, and I. Y. Chan (1975)Chem. Phys. Lett. 34, 423–426.

    Google Scholar 

  42. G. Gradl, J. Friedrich, and B. E. Kohler (1986)J. Chem. Phys. 84, 2079–2083.

    Google Scholar 

  43. J. Zuclich (1970)J. Chem. Phys. 52, 3586–3591.

    PubMed  Google Scholar 

  44. J. Zuclich, D. Schweitzer, and A. H. Maki (1973)Photochem. Photobiol. 18, 161–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, L.E., Maki, A.H. Study ofl-tryptophan corepressor binding to mutatedE. coli tryptophan repressor proteins by optically detected triplet-state magnetic resonance. J Fluoresc 4, 217–226 (1994). https://doi.org/10.1007/BF01878454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01878454

Key Words

Navigation