Skip to main content
Log in

Characteristics of CO2-independent pH equilibration in human red blood cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The rate of dissipation of a pH gradient across the red cell membrane has been measured at pH 5.7–7.5 in a medium free of CO2 and other penetrating acids or bases. The measured rates and extents of pH movements are influenced only slightly by valinomycin-induced changes in the membrane potential. This indicates that the primary process involved is electrically silent OH/Cl exchange or H+/Cl cotransport. This electrically silent pH equilibration has several characteristics which suggest the involvement of the red cell anion exchange protein.

  1. 1.

    It is strongly inhibited by phloretin and DIDS (4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid).

  2. 2.

    The rates of pH equilibration depend on the halide present in the medium, the relative rates being 100, 18, and 2 in NaCl, NaBr, and NaI media, respectively.

  3. 3.

    The pH equilibration has apparent activation energies of 27 kcal/mol atT<13°C and 16 kcal/mol atT>13°C.

The pH dependence of the equilibration rate, however, is much more consistent with H+/Cl cotransport than with OH/Cl exchange; the rate increases steeply with the H+, rather than the OH concentration. It is suggested therefore that the transport event is H+/Cl cotransport, but that this transport is mediated by the membrane protein that catalyzes anion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells.J. Gen. Physiol. 70:283

    Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells.J. Membrane Biol. 15:207

    Google Scholar 

  • Chow, E.I., Crandall, E.D., Forster, R.E. 1976. Kinetics of bicarbonate-chloride exchange across the human red blood cell membrane.J. Gen. Physiol. 68:633

    Google Scholar 

  • Cousin, J.L., Motais, R., Sola, F. 1975. Transmembrane exchange of chloride with bicarbonate ion in mammalian red blood cells: Evidence for a sulphonamide-sensitive “carrier”.J. Physiol. (London) 253:385

    Google Scholar 

  • Crandall, E.D., Klocke, R.A., Forster, R.E. 1971. Hydroxyl ion movements across the human erythrocyte membrane.J. Gen. Physiol. 57:664

    Google Scholar 

  • Dalmark, M. 1975. Chloride transport in human red cells.J. Physiol. (London) 250:39

    Google Scholar 

  • Dalmark, M. 1976a. Chloride in the human erythrocyte. Distribution and transport between cellular and extracellular fluids and structural features of the cell membrane.In: Progress in Biophysics and Molecular Biology. J.A.V. Butler and D. Noble, editors. Vol. 31, p. 145 Pergamon, Oxford

    Google Scholar 

  • Dalmark, M. 1976b. Effects of halides and bicarbonate on chloride transport in human red blood cells.J. Gen. Physiol. 67:223

    Google Scholar 

  • Dalmark, M., Wieth, J.O. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate, and salicylate transport in human red cells.J. Physiol. (London) 224:583

    Google Scholar 

  • Deuticke, B. 1972. The transmembrane exchange of chloride with hydroxyl and other anions in mammalian red blood cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-BAse Status. M. Rørth and P. Astrup, editors p. 307. Munksgaard, Copenhagen

    Google Scholar 

  • Duhm, J. 1972. The effect of 2,3-DPG and other organic phosphates on the Donnan equilibrium and the oxygen affinity of human blood.In. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors. p. 583. Munksgaard, Copenhagen

    Google Scholar 

  • Duhm, J. 1976. Influence of 2,3-diphosphoglycerate on the buffering properties of human blood.Pfluegers Arch. 363:61

    Google Scholar 

  • Forster, R.E. 1972. The effect of pH on the OH permeability of human red cells at 37°C.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors. p. 335. Munksgaard, Copenhagen

    Google Scholar 

  • Funder, J., Wieth, J.O. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand. 68:234

    Google Scholar 

  • Funder, J., Wieth, J.O. 1976. Chloride transport in human erythrocytes and ghosts: A quantitative comparison.J. Physiol. (London) 262:679

    Google Scholar 

  • Gunn, R.B. 1972. A titratable carrier model for both mono- and divalent anion transport in human red blood cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen.

    Google Scholar 

  • Gunn, R.B. 1973. A titratable carrier for monovalent and divalent inorganic anions in red blood cells.In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 77. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Gunn, R.B., Dalmark, M., Tosteson, D.C., Wieth, J.O. 1973. Characteristics of chloride transport in human red blood cells.J. Gen. Physiol. 61:185

    Google Scholar 

  • Hladky, S.B., Rink, T.J. 1976. Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation di S-C3-(5) reports membrane potential.J. Physiol. (London) 263:287

    Google Scholar 

  • Ho, M.K., Guidotti, G. 1975. A membrane protein from human erythrocytes involved in anion exchange.J. Biol. Chem. 250:675

    Google Scholar 

  • Hoffman, J.F., Laris, P.C. 1974. Determination of membrane potentials in human andamphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519

    Google Scholar 

  • Jacobs, M.H., Parpart, A.K. 1932. Is the erythrocyte membrane permeable to hydrogen ions?Biol. Bull. 42:63

    Google Scholar 

  • Jacobs, M.H., Stewart, D.R. 1942. The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte.J. Gen. Physiol. 25:539

    Google Scholar 

  • Jennings, M.L. 1976. Proton fluxes associated with erythrocyte membrane anion exchange.J. Membrane Biol. 28:187

    Google Scholar 

  • Kaplan, J.H., Passow, H. 1974. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane.J. Membrane Biol. 19:179

    Google Scholar 

  • Katchalsky, A. 1967. Membrane thermodynamics.In: The Neurosciences, A study Program. G.C. Quarton, T. Melnechuk, and F.O. Schmitt, editors. p. 326. Rockefeller University Press, New York

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes.Biochim. Biophys. Acta 27:229

    Google Scholar 

  • Knauf, P.A., Fuhrmann G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363

    Google Scholar 

  • LeFevre, P.G. 1961. Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists.Pharmacol. Rev. 13:39

    Google Scholar 

  • Macey, R.I., Farmer, R.E.L. 1970. Inhibition of water and solute permeability in human red cells.Biochim. Biophys. Acta 211:104

    Google Scholar 

  • Passow, H., Fasold, H., Zaki, L., Schuhmann, B. Lepke, S. 1974/1975. Membrane proteins and anion exchange in human erythrocytes.In: Biomembranes: Structure and Function. G. Gárdos and I. Szász, editors. (FEBS Symposia Series) Vol. 35, p. 197. North Holland, Amsterdam, and Publishing House of the Hungarian Academy of Sciences, Budapest

    Google Scholar 

  • Passow, H., Wood, P.G. 1974. Current concepts of the mechanism of anion permeability.In: Drugs and Transport Processes. B.A. Callingham, editor. p. 149. Macmillan, London

    Google Scholar 

  • Sachs, J.R., Knauf, P.A., Dunham, P.B. 1975. Transport through red cell membranes.In: The Red Blood Cell. D.M. Surgenor, editor. (2nd ed.) Vol. II, p. 613. Academic Press, New York

    Google Scholar 

  • Scarpa, A., Cecchetto, A., Azzone, G.F. 1970. The mechanism of anion translocation and pH equilibration in erythrocytes.Biochim. Biophys. Acta 219:179

    Google Scholar 

  • Schnell, K.F. 1972. On the mechanism of inhibition of the sulfate transfer across the human erythrocyte membrane.Biochim. Biophys. Acta 282:265

    Google Scholar 

  • Schnell, K.F., Gerhardt, S., Schöppe-Fredenburg, A. 1977. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts.J. Membrane Biol. 30:319

    Google Scholar 

  • Tosteson, D.C. 1959. Halide transport in red blood cellsActa Physiol. Scand. 46:19

    Google Scholar 

  • Tosteson, D.C., Gunn, R.B., Wieth, J.O. 1973. Chloride and hydroxyl conductance of sheep red cell membrane.In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 62. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Van Slyke, D.D., Wu, H., McLean, F.C. 1923. Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood.J. Biol. Chem. 56:765

    Google Scholar 

  • Warburg, E.J. 1922. Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions.Biochem. J. 16:153

    Google Scholar 

  • Wieth, J.O., Dalmark, M., Gunn, R.B., Tosteson, D.C. 1973. The transfer of monovalent inorganic anions through the red cell membrane.In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch and W. Wilmanns, editors. p. 71. Georg Thieme Verlag, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, M.L. Characteristics of CO2-independent pH equilibration in human red blood cells. J. Membrain Biol. 40, 365–391 (1978). https://doi.org/10.1007/BF01874164

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01874164

Keywords

Navigation